Unique and nonunique minimizing travelling waves for some Ginzburg–Landau type equations
[Unicité et non unicité d’ondes progressives minimisantes pour des équations de type Ginzburg–Landau]
Journées équations aux dérivées partielles (2024), Exposé no. 9, 10 p.

This is a summary of an upcoming work in collaboration with Mihai Maris. We study the Schrödinger equation with a nonzero condition at infinity for some nonlinearities, for which the existence of travelling waves has been proven in [22] as solutions of a minimization problem. We show that for some of them, we do not have uniqueness of this minimizer, and we study how these travelling changes when we change the speed and/or the nonlinearity. We also discuss some examples where we have the uniqueness of travelling waves that are solutions to minimisation problems, as well as questions related to the stability of these objects.

Ceci est un résumé d’un travail à venir en collaboration avec Mihai Maris. On étudie l’équation de Schrödinger avec une condition non triviale à l’infini pour des nonlinéarités génériques, où l’éxistence d’ondes progressives a été prouvée dans [22] comme solutions d’un problème de minimisation. On démontre que pour certaines d’entre elles, il n’y a pas unicité du minimiseur, et on étudie comment ses ondes progressives évoluent quand on modifie la vitesse et/ou la nonlinéarité. On discutera aussi d’exemples où il y a unicité du minimiseur, ainsi que des questions autour de la stabilité de ces objets.

Publié le :
DOI : 10.5802/jedp.690
Classification : 35C07, 35B35, 35J15, 35C08, 35B32
Keywords: Travelling waves, minimization, bifurcation, stability
Mots-clés : Ondes progressives, minimisation, bifurcation, stabilité

Eliot Pacherie 1

1 CNRS and CY Cergy University UFR Sciences et Techniques, AGM - Département Mathématiques, Bureau E 505 2, avenue Adolphe Chauvin 95302 Cergy-Pontoise, France
@incollection{JEDP_2024____A9_0,
     author = {Eliot Pacherie},
     title = {Unique and nonunique minimizing travelling waves for some {Ginzburg{\textendash}Landau} type equations},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:9},
     pages = {1--10},
     year = {2024},
     publisher = {R\'eseau th\'ematique AEDP du CNRS},
     doi = {10.5802/jedp.690},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.690/}
}
TY  - JOUR
AU  - Eliot Pacherie
TI  - Unique and nonunique minimizing travelling waves for some Ginzburg–Landau type equations
JO  - Journées équations aux dérivées partielles
N1  - talk:9
PY  - 2024
SP  - 1
EP  - 10
PB  - Réseau thématique AEDP du CNRS
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.690/
DO  - 10.5802/jedp.690
LA  - en
ID  - JEDP_2024____A9_0
ER  - 
%0 Journal Article
%A Eliot Pacherie
%T Unique and nonunique minimizing travelling waves for some Ginzburg–Landau type equations
%J Journées équations aux dérivées partielles
%Z talk:9
%D 2024
%P 1-10
%I Réseau thématique AEDP du CNRS
%U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.690/
%R 10.5802/jedp.690
%G en
%F JEDP_2024____A9_0
Eliot Pacherie. Unique and nonunique minimizing travelling waves for some Ginzburg–Landau type equations. Journées équations aux dérivées partielles (2024), Exposé no. 9, 10 p.. doi: 10.5802/jedp.690

[1] M. Abid; C. Huepe; S. Metens; C. Nore; C. T. Pham; L. S. Tuckerman; M. E. Brachet Gross–Pitaevskii dynamics of Bose–Einstein condensates and superfluid turbulence, Fluid Dyn. Res., Volume 33 (2003) no. 5-6, pp. 509-544 | DOI

[2] J. Bellazzini; D. Ruiz Finite energy traveling waves for the Gross–Pitaevskii equation in the subsonic regime (2019) (preprint)

[3] F. Bethuel; P. Gravejat; J.-C. Saut On the KP I transonic limit of two-dimensional Gross–Pitaevskii travelling waves, Dyn. Partial Differ. Equ., Volume 5 (2008) no. 3, pp. 241-280 | DOI | MR

[4] F. Bethuel; P. Gravejat; J.-C. Saut Ondes progressives pour l’équation de Gross–Pitaevskii, Sémin. Équ. Dériv. Partielles, Volume 2007-2008 (2008), XV, 28 pages | MR | Numdam

[5] F. Bethuel; P. Gravejat; J.-C. Saut Travelling waves for the Gross–Pitaevskii equation. II, Commun. Math. Phys., Volume 285 (2009) no. 2, pp. 567-651 | DOI | MR

[6] D. Chiron Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension one, Nonlinearity, Volume 25 (2012) no. 3, pp. 813-850 | DOI | Zbl | MR

[7] D. Chiron Smooth branch of rarefaction pulses for the Nonlinear Schrödinger Equation and the Euler–Korteweg system in 2d, Ann. Henri Lebesgue (2023), pp. 767-845 | DOI | MR

[8] D. Chiron; M. Mariş Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity, Arch. Ration. Mech. Anal., Volume 226 (2017) no. 1, pp. 143-242 | DOI | MR

[9] D. Chiron; E. Pacherie A uniqueness result for the two-vortex traveling wave in the nonlinear Schrödinger equation, Anal. PDE, Volume 16 (2023) no. 9, pp. 2173-2224 | DOI | MR

[10] D. Chiron; C. Scheid Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension two, J. Nonlinear Sci., Volume 26 (2016) no. 1, pp. 171-231 | DOI | MR

[11] D. Chiron; C. Scheid Multiple branches of travelling waves for the Gross-Pitaevskii equation, Nonlinearity, Volume 31 (2018) no. 6, pp. 2809-2853 | DOI | MR

[12] P. Gérard The Cauchy problem for the Gross–Pitaevskii equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 23 (2006) no. 5, pp. 765-779 | DOI | MR | Numdam

[13] V. L. Ginzburg; L. P. Pitaevskii On the theory of superfluidity, Sov. Phys. JETP, Volume 7 (1958) no. 5, pp. 858-861 | MR

[14] P. Gravejat A non-existence result for supersonic travelling waves in the Gross-Pitaevskii equation, Commun. Math. Phys., Volume 243 (2003) no. 1, pp. 93-103 | DOI | MR

[15] Philippe Gravejat Limit at infinity and nonexistence results for sonic travelling waves in the Gross-Pitaevskii equation, Differ. Integral Equ., Volume 17 (2004) no. 11-12, pp. 1213-1232 | MR

[16] Philippe Gravejat; Eliot Pacherie; Didier Smets On the stability of the Ginzburg–Landau vortex, Proc. Lond. Math. Soc., Volume 125 (2022) no. 5, pp. 1015-1065 | DOI | MR

[17] Philippe Gravejat; Didier Smets Asymptotic stability of the black soliton for the Gross-Pitaevskii equation, Proc. Lond. Math. Soc., Volume 111 (2015) no. 2, pp. 305-353 | DOI | MR

[18] S. Gustafson; K. Nakanishi; T-P. Tsai Scattering theory for the Gross-Pitaevskii equation in three dimensions, Commun. Contemp. Math., Volume 11 (2009) no. 04, pp. 657-707 | DOI | MR

[19] R.-M. Hervé; M. Hervé Étude qualitative des solutions réelles d’une équation différentielle liée à l’équation de Ginzburg-Landau, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 11 (1994) no. 4, pp. 427-440 | DOI | MR | Numdam

[20] Y. S. Kivshar; B. Luther-Davies Dark optical solitons: physics and applications., Phys. Rep., Volume 298 (1998), pp. 81-197 | DOI

[21] Y. Liu; J. Wei Multivortex traveling waves for the Gross-Pitaevskii equation and the Adler-Moser polynomials, SIAM J. Math. Anal., Volume 52 (2020) no. 4, pp. 3546-3579 | DOI | MR

[22] M. Mariş Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity, Ann. Math. (2), Volume 178 (2013) no. 1, pp. 107-182 | DOI | MR

[23] E. Pacherie A uniqueness result for travelling waves in the Gross–Pitaevskii equation, Sémin. Laurent Schwartz, EDP Appl., Volume 2021-2022 (2022), 17, 16 pages | DOI | Numdam

[24] L. Pismen Vortices in Nonlinear Fields: From Liquid Crystals to Superfluids, From Non-Equilibrium Patterns to Cosmic Strings, International Series of Monographs on Physics, 100, Oxford University Press, 1999, xv+290 pages | DOI

[25] P. H. Roberts; N. G. Berloff The Nonlinear Schrödinger Equation as a Model of Superfluidity, Quantized Vortex Dynamics and Superfluid Turbulence (C. F. Barenghi; R. J. Donnelly; W. F. Vinen, eds.) (Lecture Notes in Physics), Volume 571, Springer, 2001, pp. 235-257 | DOI

Cité par Sources :