[Unicité et non unicité d’ondes progressives minimisantes pour des équations de type Ginzburg–Landau]
This is a summary of an upcoming work in collaboration with Mihai Maris. We study the Schrödinger equation with a nonzero condition at infinity for some nonlinearities, for which the existence of travelling waves has been proven in [22] as solutions of a minimization problem. We show that for some of them, we do not have uniqueness of this minimizer, and we study how these travelling changes when we change the speed and/or the nonlinearity. We also discuss some examples where we have the uniqueness of travelling waves that are solutions to minimisation problems, as well as questions related to the stability of these objects.
Ceci est un résumé d’un travail à venir en collaboration avec Mihai Maris. On étudie l’équation de Schrödinger avec une condition non triviale à l’infini pour des nonlinéarités génériques, où l’éxistence d’ondes progressives a été prouvée dans [22] comme solutions d’un problème de minimisation. On démontre que pour certaines d’entre elles, il n’y a pas unicité du minimiseur, et on étudie comment ses ondes progressives évoluent quand on modifie la vitesse et/ou la nonlinéarité. On discutera aussi d’exemples où il y a unicité du minimiseur, ainsi que des questions autour de la stabilité de ces objets.
Keywords: Travelling waves, minimization, bifurcation, stability
Mots-clés : Ondes progressives, minimisation, bifurcation, stabilité
Eliot Pacherie 1
@incollection{JEDP_2024____A9_0,
author = {Eliot Pacherie},
title = {Unique and nonunique minimizing travelling waves for some {Ginzburg{\textendash}Landau} type equations},
booktitle = {},
series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
note = {talk:9},
pages = {1--10},
year = {2024},
publisher = {R\'eseau th\'ematique AEDP du CNRS},
doi = {10.5802/jedp.690},
language = {en},
url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.690/}
}
TY - JOUR AU - Eliot Pacherie TI - Unique and nonunique minimizing travelling waves for some Ginzburg–Landau type equations JO - Journées équations aux dérivées partielles N1 - talk:9 PY - 2024 SP - 1 EP - 10 PB - Réseau thématique AEDP du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.690/ DO - 10.5802/jedp.690 LA - en ID - JEDP_2024____A9_0 ER -
%0 Journal Article %A Eliot Pacherie %T Unique and nonunique minimizing travelling waves for some Ginzburg–Landau type equations %J Journées équations aux dérivées partielles %Z talk:9 %D 2024 %P 1-10 %I Réseau thématique AEDP du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.690/ %R 10.5802/jedp.690 %G en %F JEDP_2024____A9_0
Eliot Pacherie. Unique and nonunique minimizing travelling waves for some Ginzburg–Landau type equations. Journées équations aux dérivées partielles (2024), Exposé no. 9, 10 p.. doi: 10.5802/jedp.690
[1] Gross–Pitaevskii dynamics of Bose–Einstein condensates and superfluid turbulence, Fluid Dyn. Res., Volume 33 (2003) no. 5-6, pp. 509-544 | DOI
[2] Finite energy traveling waves for the Gross–Pitaevskii equation in the subsonic regime (2019) (preprint)
[3] On the KP I transonic limit of two-dimensional Gross–Pitaevskii travelling waves, Dyn. Partial Differ. Equ., Volume 5 (2008) no. 3, pp. 241-280 | DOI | MR
[4] Ondes progressives pour l’équation de Gross–Pitaevskii, Sémin. Équ. Dériv. Partielles, Volume 2007-2008 (2008), XV, 28 pages | MR | Numdam
[5] Travelling waves for the Gross–Pitaevskii equation. II, Commun. Math. Phys., Volume 285 (2009) no. 2, pp. 567-651 | DOI | MR
[6] Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension one, Nonlinearity, Volume 25 (2012) no. 3, pp. 813-850 | DOI | Zbl | MR
[7] Smooth branch of rarefaction pulses for the Nonlinear Schrödinger Equation and the Euler–Korteweg system in 2d, Ann. Henri Lebesgue (2023), pp. 767-845 | DOI | MR
[8] Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity, Arch. Ration. Mech. Anal., Volume 226 (2017) no. 1, pp. 143-242 | DOI | MR
[9] A uniqueness result for the two-vortex traveling wave in the nonlinear Schrödinger equation, Anal. PDE, Volume 16 (2023) no. 9, pp. 2173-2224 | DOI | MR
[10] Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension two, J. Nonlinear Sci., Volume 26 (2016) no. 1, pp. 171-231 | DOI | MR
[11] Multiple branches of travelling waves for the Gross-Pitaevskii equation, Nonlinearity, Volume 31 (2018) no. 6, pp. 2809-2853 | DOI | MR
[12] The Cauchy problem for the Gross–Pitaevskii equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 23 (2006) no. 5, pp. 765-779 | DOI | MR | Numdam
[13] On the theory of superfluidity, Sov. Phys. JETP, Volume 7 (1958) no. 5, pp. 858-861 | MR
[14] A non-existence result for supersonic travelling waves in the Gross-Pitaevskii equation, Commun. Math. Phys., Volume 243 (2003) no. 1, pp. 93-103 | DOI | MR
[15] Limit at infinity and nonexistence results for sonic travelling waves in the Gross-Pitaevskii equation, Differ. Integral Equ., Volume 17 (2004) no. 11-12, pp. 1213-1232 | MR
[16] On the stability of the Ginzburg–Landau vortex, Proc. Lond. Math. Soc., Volume 125 (2022) no. 5, pp. 1015-1065 | DOI | MR
[17] Asymptotic stability of the black soliton for the Gross-Pitaevskii equation, Proc. Lond. Math. Soc., Volume 111 (2015) no. 2, pp. 305-353 | DOI | MR
[18] Scattering theory for the Gross-Pitaevskii equation in three dimensions, Commun. Contemp. Math., Volume 11 (2009) no. 04, pp. 657-707 | DOI | MR
[19] Étude qualitative des solutions réelles d’une équation différentielle liée à l’équation de Ginzburg-Landau, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 11 (1994) no. 4, pp. 427-440 | DOI | MR | Numdam
[20] Dark optical solitons: physics and applications., Phys. Rep., Volume 298 (1998), pp. 81-197 | DOI
[21] Multivortex traveling waves for the Gross-Pitaevskii equation and the Adler-Moser polynomials, SIAM J. Math. Anal., Volume 52 (2020) no. 4, pp. 3546-3579 | DOI | MR
[22] Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity, Ann. Math. (2), Volume 178 (2013) no. 1, pp. 107-182 | DOI | MR
[23] A uniqueness result for travelling waves in the Gross–Pitaevskii equation, Sémin. Laurent Schwartz, EDP Appl., Volume 2021-2022 (2022), 17, 16 pages | DOI | Numdam
[24] Vortices in Nonlinear Fields: From Liquid Crystals to Superfluids, From Non-Equilibrium Patterns to Cosmic Strings, International Series of Monographs on Physics, 100, Oxford University Press, 1999, xv+290 pages | DOI
[25] The Nonlinear Schrödinger Equation as a Model of Superfluidity, Quantized Vortex Dynamics and Superfluid Turbulence (C. F. Barenghi; R. J. Donnelly; W. F. Vinen, eds.) (Lecture Notes in Physics), Volume 571, Springer, 2001, pp. 235-257 | DOI
Cité par Sources :

