Dans cette note, nous prouvons que les solutions non nulles à valeurs réelles de l’équation de Schrödinger elliptique avec potentiel singulier ne peuvent pas décroître plus rapidement qu’exponentiellement. La stratégie repose de manière cruciale sur la méthode introduite par Logunov, Malinnikova, Nadirashvili et Nazarov, ainsi que sur de nouveaux arguments introduits par l’auteur et Souza pour résoudre la conjecture de Landis dans le plan pour des solutions à valeurs réelles de l’équation de Laplace perturbée par des termes d’ordre inférieur bornés.
In this note, we prove that non-trivial real-valued solutions to in , where with , cannot decay faster than exponentially. The strategy builds crucially on the method introduced by Logunov, Malinnikova, Nadirashvili, and Nazarov, as well as some new arguments introduced by the author and Souza to solve the Landis conjecture in the plane for real-valued solutions to the Laplace equation perturbed by bounded lower-order terms.
@incollection{JEDP_2024____A8_0, author = {K\'evin Le Balc{\textquoteright}h}, title = {On the exponential decay for real-valued solutions to elliptic equations with singular potentials in the plane}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:8}, pages = {1--14}, publisher = {R\'eseau th\'ematique AEDP du CNRS}, year = {2024}, doi = {10.5802/jedp.689}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.689/} }
TY - JOUR AU - Kévin Le Balc’h TI - On the exponential decay for real-valued solutions to elliptic equations with singular potentials in the plane JO - Journées équations aux dérivées partielles N1 - talk:8 PY - 2024 SP - 1 EP - 14 PB - Réseau thématique AEDP du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.689/ DO - 10.5802/jedp.689 LA - en ID - JEDP_2024____A8_0 ER -
%0 Journal Article %A Kévin Le Balc’h %T On the exponential decay for real-valued solutions to elliptic equations with singular potentials in the plane %J Journées équations aux dérivées partielles %Z talk:8 %D 2024 %P 1-14 %I Réseau thématique AEDP du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.689/ %R 10.5802/jedp.689 %G en %F JEDP_2024____A8_0
Kévin Le Balc’h. On the exponential decay for real-valued solutions to elliptic equations with singular potentials in the plane. Journées équations aux dérivées partielles (2024), Exposé no. 8, 14 p. doi : 10.5802/jedp.689. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.689/
[1] Lars V. Ahlfors Lectures on quasiconformal mappings, Mathematical Studies, 10, D. Van Nostrand Co., 1966, v+146 pages (Manuscript prepared with the assistance of Clifford J. Earle, Jr. Van Nostrand) | MR
[2] Kari Astala; Tadeusz Iwaniec; Gaven Martin Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Mathematical Series, 48, Princeton University Press, 2009, xviii+677 pages | MR
[3] Jean Bourgain; Carlos E. Kenig On localization in the continuous Anderson-Bernoulli model in higher dimension, Invent. Math., Volume 161 (2005) no. 2, pp. 389-426 | DOI | MR
[4] Blair Davey Some quantitative unique continuation results for eigenfunctions of the magnetic Schrödinger operator, Commun. Partial Differ. Equations, Volume 39 (2014) no. 5, pp. 876-945 | DOI | MR
[5] Blair Davey On Landis’ conjecture in the plane for some equations with sign-changing potentials, Rev. Mat. Iberoam., Volume 36 (2020) no. 5, pp. 1571-1596 | DOI | MR | Zbl
[6] Blair Davey; Jenn-Nan Wang Landis’ conjecture for general second order elliptic equations with singular lower order terms in the plane, J. Differ. Equations, Volume 268 (2020) no. 3, pp. 977-1042 | DOI | MR
[7] Blair Davey; Jiuyi Zhu Quantitative uniqueness of solutions to second order elliptic equations with singular potentials in two dimensions, Calc. Var. Partial Differ. Equ., Volume 57 (2018) no. 3, 82, 27 pages | DOI | MR
[8] Harold Donnelly; Charles Fefferman Nodal sets for eigenfunctions of the Laplacian on surfaces, J. Am. Math. Soc., Volume 3 (1990) no. 2, pp. 333-353 | DOI | MR
[9] Sylvain Ervedoza; Kévin Le Balc’h Cost of observability inequalities for elliptic equations in 2-d with potentials and applications to control theory, Commun. Partial Differ. Equations, Volume 48 (2023) no. 4, pp. 623-677 | DOI | MR
[10] Carlos E. Kenig; Nikolai Nadirashvili A counterexample in unique continuation, Math. Res. Lett., Volume 7 (2000) no. 5-6, pp. 625-630 | DOI | MR
[11] Carlos E. Kenig; Luis Silvestre; Jenn-Nan Wang On Landis’ conjecture in the plane, Commun. Partial Differ. Equations, Volume 40 (2015) no. 4, pp. 766-789 | DOI | MR
[12] Carlos E. Kenig; Jenn-Nan Wang Quantitative uniqueness estimates for second order elliptic equations with unbounded drift, Math. Res. Lett., Volume 22 (2015) no. 4, pp. 1159-1175 | DOI | MR
[13] Vladimir A. Kondratev; Evgeni M Landis Qualitative theory of second-order linear partial differential equations, Partial differential equations, 3 (Russian) (Itogi Nauki i Tekhniki), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., 1988, p. 99-215, 220 | MR
[14] Kévin Le Balc’h Exponential bounds for gradient of solutions to linear elliptic and parabolic equations, J. Funct. Anal., Volume 281 (2021) no. 5, 109094, 29 pages | DOI | MR
[15] Kévin Le Balc’h; Diego Souza Quantitative unique continuation for real-valued solutions to second order elliptic equations in the plane (2024) | arXiv
[16] Alexander Logunov; Eugenia Malinnikova; Nikolai Nadirashvili; Fedor Nazarov The Landis conjecture on exponential decay (2020) | arXiv
[17] Alexander Logunov; Eugenia Malinnikova; Nikolai Nadirashvili; Fedor Nazarov Personal communication, 2022
[18] Viktor Z. Meshkov On the possible rate of decrease at infinity of the solutions of second-order partial differential equations, Mat. Sb., Volume 182 (1991) no. 3, pp. 364-383 | DOI | MR
[19] Luca Rossi The Landis conjecture with sharp rate of decay, Indiana Univ. Math. J., Volume 70 (2021) no. 1, pp. 301-324 | DOI | MR
[20] Boyan Sirakov; Philippe Souplet The Vázquez maximum principle and the Landis conjecture for elliptic PDE with unbounded coefficients, Adv. Math., Volume 387 (2021), 107838, 27 pages | MR
[21] Zhuoqun Wu; Jingxue Yin; Chunpeng Wang Elliptic & parabolic equations, World Scientific, 2006, xvi+408 pages | DOI | MR
Cité par Sources :