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Journées Équations aux dérivées partielles
Aussois, 19–23 juin 2024
RT AEDP (CNRS)

On the exponential decay for real-valued solutions to elliptic
equations with singular potentials in the plane

Kévin Le Balc’h

Sur la décroissance exponentielle des solutions à valeurs réelles des équations
elliptiques avec des potentiels singuliers dans le plan

Résumé

Dans cette note, nous prouvons que les solutions non nulles à valeurs réelles de l’équation de Schrö-
dinger elliptique avec potentiel singulier ne peuvent pas décroître plus rapidement qu’exponentielle-
ment. La stratégie repose de manière cruciale sur la méthode introduite par Logunov, Malinnikova,
Nadirashvili et Nazarov, ainsi que sur de nouveaux arguments introduits par l’auteur et Souza pour
résoudre la conjecture de Landis dans le plan pour des solutions à valeurs réelles de l’équation de
Laplace perturbée par des termes d’ordre inférieur bornés.

Abstract

In this note, we prove that non-trivial real-valued solutions to −∆u + V u = 0 in R2, where
V ∈ Lp(R2;R) with p ∈ (1, +∞], cannot decay faster than exponentially. The strategy builds crucially
on the method introduced by Logunov, Malinnikova, Nadirashvili, and Nazarov, as well as some new
arguments introduced by the author and Souza to solve the Landis conjecture in the plane for real-
valued solutions to the Laplace equation perturbed by bounded lower-order terms.

1. Introduction

1.1. Qualitative and quantitative unique continuation at infinity

In the late 1960’s, see [13, Section 3.5, p. 171], Landis conjectured the following statement. For V
in L∞(RN ) and δ > 0,(

− ∆u+ V u = 0 in RN and |u(x)| ≤ exp(−|x|1+δ) in RN
)

⇒
(
u ≡ 0 in RN .

)
(1.1)

One can see (1.1) as a qualitative unique continuation property at infinity. The decay rate
exp(−|x|1+δ) seems to be a natural barrier, by considering the function u(x) = exp(−C

√
1 + |x|2)

for a suitable constant C > 0. Moreover, (1.1) holds when N = 1 by an ordinary differential
argument, see for instance [19] or [14, Introduction].

The Landis conjecture was first disproved by Meshkov in 1991 in the case of complex-valued
potentials V . In fact, the work [18] exhibits in the plane R2 a counterexample to (1.1):

∃ V ∈ L∞(R2;C) and u ̸≡ 0,−∆u+ V u = 0 in R2 and |u(x)| ≤ exp(−|x|4/3) in R2.
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[18] also shows that this is the right scale, proving the qualitative unique continuation property at
infinity. For V ∈ L∞(RN ) and δ > 0, we have(

− ∆u+ V u = 0 in RN and |u(x)| ≤ exp(−|x|4/3+δ) in RN
)

⇒
(
u ≡ 0 in RN .

)
In their work on Anderson localization [3], Bourgain and Kenig establish a quantitative version of
Meshkov’s result, which assumes that −∆u+V u = 0 in RN , with ∥V ∥∞ ≤ 1 and ∥u∥∞ = |u(0)| = 1.
Then, for C,C ′ > 0 sufficiently large,

sup
B(x0,1)

|u(x)| ≥ exp(−CR4/3 log(R)), ∀ R ≥ C ′, ∀ |x0| = R. (1.2)

The case of real-valued potentials has been addressed in [3] and is more challenging. We may
first ask if the qualitative Landis conjecture (1.1) holds for real-valued bounded potentials V . Then,
we may wonder if the quantitative Landis conjecture holds for real-valued potentials, i.e., if (1.2)
holds, replacing 4/3 by 1. The difficulty in tackling such a question comes from the fact that
Carleman estimates do not seem to distinguish between real-valued and complex-valued solutions
to elliptic equations.

A first breakthrough was achieved in [11], regarding the quantitative unique continuation at
infinity in the plane. Assuming that −∆u+ V u = 0 in R2 with 0 ≤ V ≤ 1 and ∥u∥∞ = |u(0)| = 1,
then for C,C ′ > 0 sufficiently large,

sup
B(x0,1)

|u(x)| ≥ exp(−CR log(R)) ∀ R ≥ C ′, ∀ |x0| = R. (1.3)

Then, subsequent papers established analogous results in the settings of variable coefficients and
singular lower-order terms, [5, 6, 12], always assuming a sign condition on the zero-order term V .

A second breakthrough was achieved very recently in the 2-d case in the work [16] by removing
the sign condition on the potential V , proving in particular (1.1) in the real-valued case. More
precisely, the authors prove that for V ∈ L∞(R2;R), there exists C > 0 sufficiently large such that(

− ∆u+ V u = 0 in R2 and |u(x)| ≤ exp(−C|x| log
1
2 (1 + |x|)) in R2

)
⇒

(
u ≡ 0 in R2

)
.

Actually, the authors prove the following quantitative unique continuation at infinity. Assuming
that −∆u+V u=0 in R2, with −1≤V ≤1 and ∥u∥∞ = |u(0)|=1, then for C,C ′>0 sufficiently large,

sup
B(x0,1)

|u(x)| ≥ exp(−CR log
3
2 (R)) ∀ R ≥ C ′, ∀ |x0| = R. (1.4)

Based on the new idea from [16], I presented at Journées EDP at Aussois, in June 2024, the
results obtained in collaboration with Souza in [15] that extend qualitative and quantitative Landis
conjecture results for second-order elliptic equations of the form −∆u−∇·(W1u)+W2 ·∇u+V u = 0
in R2 with W1,W2 ∈ L∞(R2;R2), V ∈ L∞(R2;R).

The aim of this note is to establish the same type of results for real-valued solutions to −∆u+
V u = 0 in R2 with V ∈ Lp(R2;R), a singular potential where p ∈ (1,+∞]. The advantage
of considering such an equation is that we use arguments from [15] and [16] without too much
technical difficulty, which are inherent in the first-order terms W1 and W2. Note that the case
p = 1 has to be excluded because of the counterexample to unique continuation for −∆u+V u = 0
in R2 with V ∈ L1(R2;R) by Kenig and Nadirashvili in [10]. We refer to [4] and [7] for the study
of complex-valued potentials V ∈ Lp(R2;C).

1.2. Main results
The first main result of this paper provides a positive answer to the qualitative Landis conjecture
in the plane for real-valued solutions to the equation −∆u + V u = 0 in R2 for V ∈ Lp(R2;R),
p ∈ (1,+∞].
Theorem 1.1. Let p ∈ (1,+∞]. Let u ∈ H1

loc(R2) be a real-valued weak solution to
−∆u+ V u = 0 in R2, V ∈ Lp(R2;R). (1.5)

There exists a constant C = C(V ) ≥ 1 such that if

|u(x)| ≤ exp
(

−C|x| log
1

2−2/p (|x|)
)

∀ |x| ≥ 1, (1.6)
then u ≡ 0.
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Note that the assumption that u is real-valued is actually dispensable, as one can assume that V
takes values in R. Indeed, if u is complex-valued, the real and imaginary parts of u, which are both
real-valued, satisfy (1.5) and (1.6), thus reducing the proof to the case of real-valued solutions.
However, we will utilize the fact that u is real-valued in our proof. Up to the logarithmic loss, this
result is likely optimal according to [17]. Furthermore, it extends Landis-type conjecture results [20]
in the two-dimensional setting.

Our second main result is the following quantitative unique continuation property at infinity.
Theorem 1.2. Let p ∈ (1,+∞]. Let u ∈ H1

loc(R2) ∩ L∞(R2) be a real-valued weak solution to
−∆u+ V u = 0 in R2, V ∈ Lp(R2;R), ∥V ∥p ≤ 1.

Assume that
∥u∥∞ = |u(0)| = 1.

Then there exists a positive constant C ≥ 1 such that

sup
B(x0,1)

|u(x)| ≥ exp
(

−CR log
3−2/p
2−2/p (R)

)
∀ R ≥ 2, ∀ |x0| = R. (1.7)

Theorem 1.1 and Theorem 1.2 are actually based on local quantitative unique continuation
properties and a scaling argument that we present in the next part.

1.3. Local quantitative unique continuation property
For the next part, we introduce the notation Br=B(0, r) for r>0 and log+(s)=log(2+s) for s≥0.

The following result relates to the vanishing order of real-valued solutions to second-order elliptic
equations.
Theorem 1.3. Let p ∈ (1,+∞]. Let u ∈ H1

loc(B2) ∩ L∞(B2) be a real-valued weak solution to
−∆u+ V u = 0 in B2, V ∈ Lp(B2;R). (1.8)

Assume that for K ≥ 2,
∥u∥L∞(B2) ≤ eK∥u∥L∞(B1). (1.9)

Then, there exists a positive constant C ≥ 1 such that

∥u∥L∞(Br) ≥ r
C

(
∥V ∥

1
2−2/p
p log

1
2−2/p
+ (∥V ∥p)+K

)
∥u∥L∞(B2), ∀ r ∈ (0, 1/2). (1.10)

The rescaled version of Theorem 1.3 is the following result.
Theorem 1.4. Let p ∈ (1,+∞]. Let R ≥ 2. Let u ∈ H1

loc(B2R) ∩ L∞(B2R) be a real-valued weak
solution to

−∆u+ V u = 0 in B2R, V ∈ Lp(B2R;R), ∥V ∥p ≤ 1.
Assume that for K ≥ 2,

∥u∥L∞(B2R) ≤ eK∥u∥L∞(BR).

Then there exists a positive constant C ≥ 1 such that

∥u∥L∞(Br) ≥
( r
R

)CR log
1

2−2/p (R)+CK
∥u∥L∞(B2R) ∀ r ∈ (0, R/2). (1.11)

The end of this part consists of proving the following sequence of implications:
Theorem 1.3 ⇒ Theorem 1.4 ⇒ Theorem 1.1 and Theorem 1.2. (1.12)

Proof of Theorem 1.4 from Theorem 1.3. We apply Theorem 1.3 to uR(x) = u(Rx), which solves
(1.8) with VR(x) = R2V (Rx) ∈ Lp(B2;R). Remark that

∥VR∥p ≤ R2−2/p,

so for every r ∈ (0, R/2), i.e., (r/R) ∈ (0, 1/2), we have

∥u∥L∞(Br) = ∥uR∥L∞(Br/R)

≥
( r
R

)CR log
1

2−2/p (R)+CK
∥uR∥L∞(B2) =

( r
R

)CR log
1

2−2/p (R)+CK
∥u∥L∞(B2R),

leading to the expected inequality (1.11). □
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We now prove Theorem 1.1 and Theorem 1.2 from Theorem 1.4.

Proof of Theorem 1.1 from Theorem 1.4. Replacing u by uλ(x) = u(λx) for λ > 0 small enough,
one can assume that ∥V ∥p ≤ 1. We then argue by contradiction, assuming that uλ is not identically
equal to 0. Since |uλ| tends to 0 as |x| → ∞, it follows that |uλ| attains its global maximum at
some point xmax in the plane. For any R ≥ 2|xmax| + 2 and any x with |x| = R/2, we have

sup
B(x,2R)

|uλ| = sup
B(x,R)

|uλ|,

and additionally, by applying Theorem 1.4 to uλ(x+ · ), we have for C ≥ 1,

sup
B(x,R/4)

|uλ| ≥ exp(−CR log
1

2−2/p (R)),

leading to a contradiction with the decay assumption (1.6). □

Proof of Theorem 1.2 from Theorem 1.4. Take x0 ∈ R2 such that |x0| = R. From the assumption
∥u∥∞ = |u(0)| = 1, we have

∥u(x0 + · )∥L∞(B2R) = ∥u(x0 + · )∥L∞(BR).

Thus, we can apply (1.11) to the function u(x0 + · ) with r = 1 ≤ R/2 to get

∥u(x0 + · )∥L∞(B1) ≥ (1/R)CR log
1

2−2/p (R) ≥ exp
(

−CR log
3−2/p
2−2/p (R)

)
,

showing that (1.7) holds. □

1.4. Strategy of the proof of the main local result Theorem 1.3
Notation and parameters. In the following and throughout the paper, C,C ′ ≥ 1 denote various
large positive numerical constants, c, c′ > 0 denote various small positive numerical constants, and
ε > 0 is a sufficiently small parameter chosen depending on ∥V ∥p, as detailed below.

In this part, we present the strategy of the proof of Theorem 1.3 and the main arguments of
each step. This strategy follows the approach of [16]. We will explain at the end of this section the
new difficulties compared to [16]. The proof of Theorem 1.3 is divided into three main steps.

Step 1: Construction of a positive multiplier φ in a suitable perforated domain.
We first introduce the set of zeros of u, called the nodal set of u:

Z := {x ∈ B2 | u(x) = 0}.

In this step, we shall first prove that Z satisfies the following fundamental property:

∀ x0 ∈ Z, ∀ ρ ∈ (0, ε), ∂B(x0, ρ) ∩ (Z ∪ ∂B(0, 2)) ̸= ∅, (P-ε)

for
ε ≤ c+ c∥V ∥

− 1
2−2/p

∞ . (1.13)
The next point consists of perforating the domain B(0, 2) using sufficiently small disks (of radius ε)
in a sufficiently large number, whose union is denoted by Fε, avoiding Z, ∂B(0, 2), 0, and xmax,
the point at which |u| is maximal in B1. The resulting perforated domain Ωε = B2 \ (Z ∪Fε) has a
small Poincaré constant of the form C ′ε, allowing us to construct a positive solution φ ∈ H1(Ωε)
satisfying

−∆φ+ V φ = 0 in Ωε,
and

φ− 1 ∈ H1
0 (Ωε), ∥φ− 1∥L∞(Ωε) ≤ Cε2−2/p∥V ∥∞.

In the following, we will refer to this solution φ as a multiplier. Note that for the construction of
the multiplier, ε is still of the form (1.13).
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Step 2: Reduction to harmonic equation in a perforated domain. Thanks to the positive
multiplier from the previous step, we first reduce the elliptic equation −∆u+V u = 0 to a divergence
type elliptic equation satisfied by v = u/φ:

−∇ · (φ2∇v) = 0 in Ω′
ε = B2 \ Fε.

Note that the divergence elliptic equation is satisfied in the weak sense, through the nodal set of
u. We then apply the theory of quasiconformal mappings to find L : B2 → B2, a quasiconformal
mapping, to recast the divergence elliptic equation satisfied by h = v ◦ L−1:

−∆h = 0 in L(Ω′
ε). (1.14)

The next point of this step consists of controlling how the quasiconformal change of variable L
transforms Ω′

ε to another perforated domain. In particular, the holes, which were disks before, will
be transformed into holes that still cannot be too flattened by this quasiconformal transform. Note
that at the end of this step, ε is now fixed, satisfying

ε ≤ c+ c∥V ∥
− 1

2−2/p
p log

1
2−2/p

+ (∥V ∥p). (1.15)

Step 3: A Carleman estimate for ∆ in a perforated domain. We now employ a Carleman
estimate in B(0, 2) for a cut-off version of h, called y, which vanishes in a small neighbourhood of
∂B(0, 2), in a r′-neighbourhood of B(0, r′/2) where B(0, r′) ⊂ L(B(0, r)), and in a ε-neighbourhood
denoted Vε containing L(Fε),∫

B2

|y|2e−2s log(|z|)+2|z|2
dz + ε−4

∫
Vε

|y|2e−2s log(|z|)+2|z|2
dz

≤ C

∫
B2

|∆y|2e−2s log(|z|)+2|z|2
dz, ∀ s ≥ 1.

By using Harnack inequalities, the cut-off terms near Vε are absorbed by choosing the parameter
s in the Carleman estimate such that

s ≥ Cε−1.

Thus, according to (1.15), the following choice of s is convenient:

s ≥ C∥V ∥
1

2−2/p
p log

1
2−2/p

+ (∥V ∥p) + C.

The cut-off terms near ∂B(0, 2) are absorbed using (1.9) and by recalling that the perforation
process in Step 1 avoids the point xmax. Here, s must be taken such that

s ≥ C∥V ∥
1

2−2/p
p log

1
2−2/p

+ (∥V ∥p) + CK + C.

The cut-off term near B(0, r′/2) will be our observation term, i.e. the left-hand side of (1.10),
recalling that r′ = cr2 if r ≤ Cε or r′ = cr if r > Cε. This combination of arguments leads to the
expected quantitative unique continuation estimate for u, i.e. (1.10).

Steps 1, 2, and 3 are critically inspired by the methodology in [16], which focuses on the case of
the elliptic equation −∆u+ V u = 0. Still, our strategy differs from that in [16] in Steps 1 and 3.

Differences in Step 1 compared to [16, Act 1]. The main difference is the presence of the
unbounded potential V ∈ Lp(B2;R).

We first prove a weak quantitative maximum principle for Φ ∈ H1
0 (Ω) satisfying −∆Φ = f

with f ∈ Lp(Ω), where Ω is a bounded open set with a small Poincaré constant (see Lemma 2.2
below). This is a generalization of the weak quantitative maximum principle [16, Lemma 6.10]
for the Laplace equation −∆Φ = f with f ∈ L∞(Ω). We implement De Giorgi’s method in the
associated variational formulation of the elliptic equation −∆Φ = f , and because of the Lp-source
term, we need to use precise Sobolev inequalities, quantified in terms of the Poincaré constant (see
Lemma 2.1 below), which come from [15].
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Differences in Step 3 compared to [16, Act 3]. Here, we do not follow [16, Act 3] and prefer
employing an argument similar to [15, Step 3], which consists of using a Carleman estimate with a
singular weight in a perforated domain. Our strategy takes inspiration from [16, Section 6.1] and [9,
Step 6]. Indeed, [16, Section 6.1] proposes an alternative strategy to [16, Act 3], based on a simple
Carleman estimate with a linear weight, but with the drawback of a logarithmic loss. In this part,
still working with the singular weight function of [15, Step 3] and using some ideas from [8], we
avoid the logarithmic loss.

1.5. Organization of the paper
In Section 2, we present the Step 1 of the proof of the main local result Section 1.3. In Section 3,
we present the Step 2 of the proof of the main local result Theorem 1.3. In Section 4, we present
the Step 3 of the proof of the main local result Theorem 1.3. We highlight that we do not give
all the full proofs of the results, even if some are new, because they are small adaptations of the
arguments coming from [15] and [16].

Acknowledgements
I would like to acknowledge the organizers of Journées EDP in Aussois, June 2024 for the invitation
to give a talk and for the great scientific atmosphere of the conference.

2. Step 1: Construction of a positive multiplier

The main goal of this step is to construct a positive multiplier for the equation −∆φ + V φ = 0.
As explained in Section 1.4, this construction can be made possible by perforating the domain
B2 in a suitable way to reduce the Poincaré constant. Indeed, this will allow us to apply weak
maximum principles, quantified as a function of the Poincaré constant and the parameters of the
elliptic operator, to prove the existence of such a function φ.

2.1. Weak quantitative maximum principles
The goal of this first part is to prove maximum principles for elliptic operators in an open bounded
set Ω, with a small Poincaré constant.

2.1.1. With a Lp-source term

The main result of this part is a weak maximum principle with a Lp-source term, stated in
Lemma 2.2 below.

We first state the following Sobolev’s inequality, see [15].

Lemma 2.1. For every ε > 0, C ′ ≥ 1, q ∈ [2,+∞), there exists C > 0, independent of ε, such
that for every bounded open set Ω ⊂ R2 with CP (Ω)2 ≤ (C ′)2ε2, we have

∥u∥Lq(Ω) ≤ Cε2/q ∥∇u∥L2(Ω) ∀ u ∈ H1
0 (Ω). (2.1)

The following weak maximum principle is new.

Lemma 2.2. For every ε > 0, C ′ ≥ 1, p ∈ (1,+∞], there exist c > 0 and C > 0, independent of
ε, such that for every bounded open set Ω ⊂ R2 with CP (Ω)2 ≤ (C ′)2ε2, f ∈ Lp(Ω;R), satisfying

ε ≤ c, (2.2)
then there exists a unique Φ ∈ H1

0 (Ω) solution of
−∆Φ = f in Ω, (2.3)

satisfying
∥Φ∥L∞(Ω) ≤ Cε2−2/p ∥f∥Lp(Ω) , (2.4)

together with

∥Φ∥H1
0 (Ω) ≤ Cε2/p′

∥f∥Lp(Ω) , p ∈ (1, 2), or ∥Φ∥H1
0 (Ω) ≤ Cε ∥f∥L2(Ω) , p ∈ [2,+∞]. (2.5)
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This is a generalization of [16, Lemma 6.10] and the new difficulty lies in handling Lp-source
terms. The whole proof is given in Section A.

By using Lemma 2.2, we can now obtain the following result that is the main result of this part.

Proposition 2.3. For every ε > 0, C ′ ≥ 1, p ∈ (1,+∞], there exist c > 0 and C > 0, independent
of ε, such that for every bounded open set Ω ⊂ R2 with CP (Ω)2 ≤ (C ′)2ε2, V ∈ Lp(Ω;R), satisfying

ε2−2/p ∥V ∥Lp(Ω) ≤ c,

there exists a unique φ ∈ H1(Ω) such that

−∆φ+ V φ = 0 in Ω, (2.6)

and φ̃ = φ− 1 satisfies φ̃ ∈ H1
0 (Ω) and

∥φ̃∥L∞(Ω) ≤ Cε2−2/p ∥V ∥Lp(Ω) . (2.7)

2.2. Properties of the nodal set and perforation process
Take ε > 0 a free parameter satisfying

ε2−2/p ∥V ∥Lp(B2) ≤ c. (2.8)

Let us now give an application of Lemma 2.3 to establish the fundamental property on the nodal
set of u, that we called before (P-ε).

Lemma 2.4. Let u be a real-valued solution to −∆u + V u = 0 in a ball B(x, ε) with ε > 0
satisfying (2.8) and u ∈ H1(B(x, ε)) ∩ C0(B(x, ε)). Then, if u > 0 on ∂B(x, ε) then u > 0 in
B(x, ε).

Corollary 2.5. Let u be as in Theorem 1.3. Then, the nodal set of u,

Z := {x ∈ B(0, 2) ; u(x) = 0},

is closed in B(0, 2) and satisfies the following property

∀ x0 ∈ Z, ∀ ρ ∈ (0, ε), ∂B(x0, ρ) ∩ (Z ∪ ∂B(0, 2)) ̸= ∅. (P-ε)

Let us take xmax ∈ B1 such that

|u(xmax)| = sup
B1

|u|.

The next step is to construct a suitable perforation of the domain B2 which avoids the nodal
set Z, ∂B(0, 2), xmax and 0.

From Crollary 2.5, we then get the following lemma, that is stated in [16, Section 3.1] (see
also [9, Lemma 2.10]).

Lemma 2.6. For all C0 ≥ 5, for every ε > 0, there exist finitely many C0ε-separated closed disks
of radius ε, whose union is denoted by Fε, satisfying the following properties:

• these disks are C0ε-separated from each other, from Z, from ∂B(0, 2), from xmax and from 0,

• the set Z ∪ Fε ∪ ∂B(0, 2) is a 6C0ε-net in B(0, 2), meaning that for all x ∈ B(0, 2),
B(x, 6C0ε) ∩ (Z ∪ Fε ∪ ∂B(0, 2)) ̸= ∅.

• the set
Ωε := B(0, 2) \ (Z ∪ Fε) (2.9)

satisfies CP (Ωε)2 ≤ C2ε2 for some constant C > 0 depending on C0 but independent of ε,
u and V .

In the sequel, it will be useful to choose a very large C0. For simplicity, from now on, we set
C0 = 18 · 322. This choice will be made clearer later.
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2.3. Construction of the positive multiplier
Note that now ε > 0 is still a free parameter satisfying

ε+ ε2−2/p ∥V ∥L∞(B2) ≤ c, (2.10)

where c > 0 is a small positive constant depending on the constant C that appears in Lemma 2.6.
We have the following result, that is the main result of this Step 1.

Proposition 2.7. Let Ωε be as in Lemma 2.6. There exists φ ∈ H1(Ωε) such that
−∆φ+ V φ = 0 in Ωε, (2.11)

and φ̃ = φ− 1 satisfies φ̃ ∈ H1
0 (Ωε) and

∥φ̃∥L∞(Ωε) ≤ Cε2−2/p ∥V ∥Lp(B2) . (2.12)

3. Step 2: Reduction to a non-homogeneous ∂z̄-equation

The goal of this step is to use the multiplier φ, defined in Ωε in the previous step, as introduced in
Proposition 2.7, to first transform the equation (1.8) into a divergence elliptic equation in a subset
of B2. Then, by using a quasiconformal change of variable, we will recast this divergence elliptic
equation into an elliptic equation of the form −∆h = 0.

3.1. The new equation satisfied by v = u/φ

The first step is to rewrite the elliptic problem −∆u+ V u = 0 in B2 as an equation in divergence
form.

Unfortunately, we cannot do this directly in the whole set B2, but only in the set
Ω′
ε = B2 \ Fε,

which is slightly larger than the set Ωε = B2 \ (Z ∪ Fε) defined in (2.9).
Using the equation for φ in (2.11), it is clear that by setting v = u/φ in Ωε, we have −∇ ·

(φ2∇v) = 0 in Ωε. Extend φ by 1 to B2. In fact, since Ω′
ε = Ωε ∪ Z, and u vanishes on Z, an

adaptation of [16, Lemma 4.1] shows that the equation −∇ · (φ2∇v) = 0 also holds in Ω′
ε. To be

more precise, we obtain the following result.

Lemma 3.1. The function v defined in Ω′
ε by

v := u

φ
in Ω′

ε, (3.1)

belongs to H1(Ω′
ε) and satisfies in the weak sense

−∇ · (φ2∇v) = 0 in Ω′
ε,

Note that the computations take care of what happens through the nodal set of u, i.e. Z.

3.2. Quasiconformal change of variable
We then utilize the theory of quasiconformal mappings, which, roughly speaking, guarantees that
solutions to homogeneous elliptic divergence equations behave like harmonic functions; see, e.g., [2].

Lemma 3.2. There exists an homeomorphic mapping L of B(0, 2) into itself such that

• L ∈ H1
loc(B2) satisfies the following Beltrami equation

∂z̄L = µ∂zL in B2, (3.2)
with µ ∈ L∞(B2), satisfying µ = 0 in B2 \ Ω′

ε,

µ = 1 − φ2

1 + φ2 · ∂xv + i∂yv

∂xv − i∂yv
if ∇v ̸= 0, µ = 0 if ∇v = 0 in Ω′

ε, (3.3)

and
∥µ∥L∞(B2) ≤ Cε2−2/p ∥V ∥Lp(B2), (3.4)
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• L is a K-quasiconformal mapping of B2 into itself, with K satisfying

1 ≤ K ≤ 1 + Cε2−2/p ∥V ∥Lp(B2) , (3.5)

• L(0) = 0,

• the function
h = v ◦ L−1 in L(Ω′

ε), (3.6)

belongs to H1
loc(L(Ω′

ε)) and satisfies in the weak sense

−∆h = 0 in L(Ω′
ε). (3.7)

We conclude this part with the analysis of the distortion of distances through the quasiconformal
mapping L, which is precisely given by Mori’s theorem; see [1, Chapter III, Section C]. For a K-
quasiconformal mapping L of B(0, R) into itself, for all z1, z2 ∈ B(0, R), we have

1
16

∣∣∣∣z1 − z2

R

∣∣∣∣K ≤ |L(z1) − L(z2)|
R

≤ 16
∣∣∣∣z1 − z2

R

∣∣∣∣1/K
. (3.8)

Here, R = 2.
Based on this result, it is not difficult to show that the balls in Fε are not overly distorted by

the map L, as demonstrated in the subsequent lemma.

Lemma 3.3. There exists a positive constant c > 0 (independent of u and V ) such that for every
ε > 0 satisfying

ε2−2/p ∥V ∥Lp(B2) log
(

2
ε

)
≤ c, (3.9)

• the images of the disks B(xj , ε) (recall the definition in Lemma 2.6) are contained in disks
of the form B(L(xj), 32ε), indexed by j ∈ J , that are (C0/32 − 64)ε-separated (recall that
C0 was fixed after Lemma 2.6) from each other, from L(Z), from L(xmax), from L(0) = 0
and from ∂B(0, 2),

• L(B(0, r/2)) contains B(0, 2r′) with

r′ = 2−5r2 if r ≤ 211ε, r′ = 2−6r if r > 211ε. (3.10)

Before ending this step of the proof, we now set ε > 0 such that

ε2−2/p ∥V ∥Lp(B2) log
(

2
ε

)
≤ c, (3.11)

We then set ε′ = 32ε and remark that by construction, and recalling the choice C0 = 18 · 322, for
which we have C0/32 − 64 = 16 · 32, the disks B(L(xj), ε′) given by Lemma 3.3 are 16ε′-separated
from each other, from L(Z), from ∂B2, from L(0) = 0 and from L(xmax). We will also use the
notation x′

j = L(xj).

4. Step 3: The Carleman estimate to the Laplacian

The aim of this section is to apply a suitable L2 Carleman estimate to the equation satisfied by h, as
seen in (3.7) above, in order to deduce the vanishing order estimate for u, namely (1.10). The cut-off
terms near the disks B(x′

j , ε
′) will be absorbed by the left-hand side term of the Carleman estimate

by taking the s-parameter sufficiently large as a function of ε and using Harnack’s inequality. The
boundary terms will be absorbed by leveraging the assumption on u, i.e., (1.9), and by taking
the s-parameter sufficiently large as a function of K. In order to deduce from the L2 Carleman
estimate a L∞ bound on u, specifically an estimate of |u(xmax)|, we will finally use local elliptic
regularity estimates for the operator ∆.

VIII–9



4.1. The Carleman estimate in the perforated domain
The goal of this first part is to state an elementary L2-Carleman estimate in the two-dimensional
setting.

For s ≥ 1, a parameter, let us introduce the notation
ψs(z) = −s log(|z|) + |z|2

First, remark that for every z ̸= 0,
∆ψs(z) ≥ 2.

We have the following Carleman estimate, [8, Section 2].
Proposition 4.1. Then for every y ∈ C∞

c (B2 \ ({0} ∪B(x′
j , ε

′))), we have∫
B2

|y|2e2ψs(z)dz + ε−4
∑
j∈J

∫
4ε′≤|z−x′

j
|≤8ε′

|y|4e2ψs(z)dz ≤ C

∫
B2

|∆y|2e2ψs(z)dz. (4.1)

Note that in Proposition 4.1, we crucially use the elementary Carleman estimate stated in [8,
Proposition 2.1] for the ∂z̄-operator. In contrast with most of the Carleman estimates, this inequal-
ity can involve a singularity weight function at several points. In our case, the weight function for
obtaining (4.1) will be of the form

Ψs(z) = eψs(z)Φε(z),
where Φε satisfies
c1 ≤ Φε(z) ≤ c2, ∆ log Φε ≥ 0 in B2 \ ∪(B(x′

j , ε
′)), ∆ log Φε ≥ c3ε

−2 in 4ε′ ≤ |z − x′
j | ≤ 8ε′.

4.2. Application of the Carleman estimate
Let us introduce η a cut-off function such that η = 0 in a r′-neighborhood of B(0, r′), in a small
neighborhood of ∂B2 and in a ε′-neighborhood of the disks B(x′

j , ε
′) and set y = ηh. Then one can

establish the following result.
Proposition 4.2. There exists a constant C ≥ 1 such that for every s ≥ 1 satisfying

s ≥ C + Cε−1 + CK, (4.2)
we have ∫

B2

|ηh|2e2ψs(z)dz ≤ Cr′−4
∫
B(0,2r′)

|h|2e2ψs(z)dz. (4.3)

We then transform the quantitative unique continuation L2 result (4.3) to a quantitative unique
continuation L∞ result by using standard elliptic regularity estimates to ∆. We finally come back
to the variable u by using that L(xmax) is 16ε′-separated from the disks B(x′

j , ε
′) and h = v◦L−1 =

(u/φ) ◦ L−1. This leads to (1.10) and concludes the proof.

Appendix A. Proof of the weak quantitative maximum principle

Lemma A.1. There exist c > 0 small enough and C > 0 large enough such that for every bounded
open set Ω contained in R2, with CP (Ω)2 ≤ c2, f ∈ Lp(Ω;R), ∥f∥p ≤ 1, there exists a unique
Φ ∈ H1

0 (Ω) such that
−∆Φ = f in Ω, (A.1)

and Φ satisfies
∥Φ∥∞ ≤ C. (A.2)

By a scaling argument, we can then deduce the following result.

Proof of Lemma 2.2 from Lemma A.1. Let us set c0 and C0 the constants provided by Lemma A.1.
Let us set

Ω0 = c0

C ′ε
Ω, Φ̃ = c2

0
C ′2ε2−2/p ∥f∥L∞

Φ
(
C ′ε

c0
·
)
,

f̃ = ε2/p ∥f∥−1
Lp f

(
C ′ε

c0
·
)
,

VIII–10



then CP (Ω0)2 ≤ c2
0, ∥W̃∥∞ ≤ 1 provided that c ≤ c0/C

′, ∥f̃∥p ≤ 1 so one can apply Lemma A.1
that gives ∥Φ̃∥∞ ≤ C0, which leads to (2.4). For obtaining (2.5), we test the variational formulation
of (2.3) with Φ to get ∫

Ω
|∇Φ|2 =

∫
Ω
fΦ.

Now let us prove (2.5).
Let us first consider the case p ∈ (1, 2). By using the variational formulation of (2.3) with Φ,

we get by Hölder’s inequality together with Sobolev’s inequality∫
Ω

|∇Φ|2 ≤ ∥f∥Lp(Ω)∥Φ∥Lp′ (Ω) ≤ Cε2/p′
∥∇Φ∥L2(Ω)∥f∥Lp(Ω).

So, we exactly the first part of (2.5).
Now let us consider the case p ∈ [2,+∞). Note that Lp(Ω) ↪→ L2(Ω) because Ω is an open

bounded set. By the variational formulation of (2.3) with Φ, we get by Cauchy–Schwarz’s inequality
and Poincaré’s inequality

∥∇Φ∥2
L2(Ω) ≤ ∥f∥L2(Ω)∥Φ∥L2(Ω),≤ C∥f∥L2(Ω)ε∥∇Φ∥L2(Ω),

leading to the conclusion of the second part of (2.5). □

The rest of the part is then devoted to the proof of Lemma A.1.

Proof of Lemma A.1. We divide the proof into several steps and c > 0 is a positive numerical
constant that will be fixed later.

Step 1: Existence and uniqueness by Lax–Milgram’s lemma. Set k2 = CP (Ω)2 ≤ c2. Let us intro-
duce

a(u, v) =
∫

Ω
∇u · ∇v ∀ u, v ∈ H1

0 (Ω).

It is straightforward to prove that a is a continuous, bilinear, coercive form on H1
0 (Ω). Let us now

consider
l(v) =

∫
Ω
fv ∀ v ∈ H1

0 (Ω).

It is straightforward to prove that l is a continuous, linear form on H1
0 (Ω).

Therefore, by Lax–Milgram’s lemma, there exists a unique Φ ∈ H1
0 (Ω) such that∫

Ω
∇Φ · ∇v =

∫
Ω
fv ∀ v ∈ H1

0 (Ω). (A.3)

Step 2: Local estimate on Φ. We only treat the case p ∈ (1, 2) because the other case p ∈ [2,+∞]
is a simpler adaptation of the following arguments.

Now we want to prove some local estimate, i.e. there exists a positive numerical constant C > 0
such that for every unit ball B ⊂ R2, (∫

B∩Ω
|Φ|p

′
)

≤ Ck4. (A.4)

Up to a translation argument, one can assume that B = B(0, 1). Let us introduce

φ(x) = exp(−|x|).

Then, it is easy to check that φ satisfies the following properties

∀ 1 ≤ p ≤ ∞, φ ∈ W 1,p(R2), |∇φ| ≤ φ,

∫
R2
φ = 2π.

Moreover, as a consequence for every Ψ ∈ H1
0 (Ω), we have that φΨ ∈ H1

0 (Ω). So, one can apply
the Sobolev inequality (2.1) to φΦ, this leads to(∫

Ω
|φΨ|p

′
)2/p′

≤ k4/p′
∫

Ω
|∇(φΨ)|2 ≤ 2k4/p′

∫
Ω
φ2|∇Ψ|2 + 2k4/p′

∫
Ω
φ2|Ψ|2, (A.5)
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then we also have by Poincaré inequality (2.1)∫
Ω

|φΨ|2 ≤ k2
∫

Ω
|∇(φΨ)|2 ≤ 2k2

∫
Ω
φ2|∇Ψ|2 + 2k2

∫
Ω
φ2|Ψ|2. (A.6)

So by summing the two previous estimates and hence providing c < c0, we get(∫
Ω

|φΨ|p
′
)2/p′

+
∫

Ω
|φΨ|2 ≤ Ck4/p′

∫
Ω

|∇Ψ|2φ2. (A.7)

Now set v = ψΦ that also belongs to H1
0 (Ω) so one can apply the variational formulation (A.3)

to v to get ∫
Ω

|∇Φ|2ψ +
∫

Ω
(∇ψ · ∇Φ)Φ =

∫
Ω
fψΦ. (A.8)

We bound the right hand side of (A.8) by using the assumption on f , Hölder’s inequality,∣∣∣∣∫
Ω
fψΦ

∣∣∣∣ ≤ ∥φΦ∥Lp′ (Ω). (A.9)

For the second term in the left hand side of (A.8), we proceed as follows using (A.7), providing
c < 1/16, ∣∣∣∣∫

Ω
(∇ψ · ∇Φ)Φ

∣∣∣∣ ≤ 2
∫

Ω
ψ|∇Φ||Φ| ≤ 2

(∫
Ω

|Φ|2ψ
)1/2 (∫

Ω
|∇Φ|2ψ

)1/2

≤ 4k
(∫

Ω
|∇Φ|2ψ

)
≤ 1

4

∫
Ω

|∇Φ|2ψ.
(A.10)

By conjugating (A.8), (A.9), (A.10), we get for c < c0,∫
Ω

|∇Φ|2ψ ≤ Ck2/p′
(∫

Ω
|∇Φ|2ψ

)1/2
,

so ∫
Ω

|∇Φ|2ψ ≤ Ck4/p′
. (A.11)

By using (A.7) and (A.11), we get the expected result (A.4) with C = 64.

Third step: Poincaré constant of thin domains. We have the following result, that is exactly [16,
Corollary 6.9].

Lemma A.2. There exists c0 > 0 small enough such that for every k > 0, for every bounded open
set Ω ⊂ R2 satisfying

|Ω ∩Q| ≤ k2 ≤ c2
0 for any square Q with 1/2 side-length,

then CP (Ω)2 ≤ Ck2 for some numerical constant C > 0, independent of k.

Step 4: De Giorgi scheme. We now fix c = min(1/32, c0) > 0 where c0 > 0 is the constant in
Lemma A.2. Let t0 > 0 that we will be fixed later and Ω0 = {Φ > t0} ⊂ Ω with k2

0 = CP (Ω0)2.
From (A.4), we get ∫

B∩Ω
|Φ|p

′
≤ Ck4, (A.12)

then
|{Φ > t0} ∩B| ≤ Ck4

tp
′

0
.

So, by using Lemma A.2,

k2
0 ≤ Ck4

tp
′

0
.

Then, let us set t0 = (Ck)1/p′ leading to k2
0 ≤ k3 ≤ c3.

We now recall the well-known facts: H1
0 (Ω0) ⊂ H1

0 (Ω) and Φ0 := (Φ − t0)+ ∈ H1
0 (Ω0) with

∇Φ0 = ∇Φ1Ω0 , see for instance [21, Proposition 1.3.10]. Applying the variational formulation (A.3)
we then get ∫

Ω0

∇Φ0 · ∇v +
∫

Ω0

(W · ∇Φ0)v =
∫

Ω0

fv ∀ v ∈ H1
0 (Ω0).
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We then iterate the previous arguments, that is we first prove the local estimate on Φ0, there exists
a positive numerical constant C > 0 such that for every unit ball B ⊂ R2,∫

B∩Ω0

|Φ0|p
′

≤ Ck4
0. (A.13)

Let t1 > 0 that we will be fixed later and Ω1 = {Φ0 > t1} = {(Φ− t0)+ > t1} ⊂ Ω0, k2
1 = CP (Ω1)2.

We then obtain from (A.13) for every unit ball B ⊂ R2,

|{Φ0 > t1} ∩B| ≤ Ck4
0

tp
′

1
.

So, by using Lemma A.2,

k2
1 ≤ Ck4

0

tp
′

1
.

Then, let us set t1 = (Ck0)1/p′ leading to k2
1 ≤ k3

0.
By induction, we can construct

tn = (Ckn−1)1/p′
, Ωn = {Φn−1 > tn}, k2

n = CP (Ωn)2, Φn = (Φn−1 − tn)+,

for all n ∈ N, with the convention k−1 = k = Cp(Ω), Φ−1 = Φ, leading to

kn+1 ≤
(
c3/2

)n+2
∀ n ≥ 0.

With such a construction, we have because c ≤ 1/2,
+∞∑
n=0

tn ≤ C1/p′
+∞∑
n=−1

2− 3(n+1)
2p′ := T, (A.14)

|{Φn > tn+1} ∩B| ≤ k3
n for every unit ball B ⊂ R2, ∀ n ∈ N, (A.15)

Φ ≤ t0 + t1 + · · · + tn + Φn ∀ n ∈ N. (A.16)

Therefore, for every unit ball B ⊂ R2, we have from (A.15) that

|{Φn > tn+1} ∩B| → 0 as n → +∞,

hence conjugating with (A.14) and (A.16),

|{Φ > 2T} ∩B| ≤ |{Φ > 2T} ∩ {Φn ≤ tn+1} ∩B| + |{Φ > 2T} ∩ {Φn > tn+1} ∩B|
≤ |{Φn > tn+1} ∩B| → 0 as n → +∞.

Then |{Φ > 2T}| = 0 so Φ ≤ 2T almost everywhere
By linearity, using that −Φ solves (A.1) replacing f by −f , we then obtain with the same

strategy that −Φ ≤ 2T then the expected bound (A.2). □
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