This short paper will be devoted to propagation phenomena for a general reaction-diffusion equation, i.e. when it may admit an arbitrarily large number of stationary states. Large time propagation can no longer be described by a single front, but by a family of several stacked fronts (or “propagating terrace”) involving intermediate transient equilibria. We will review several strategies, differing in their range of application (homo- or heterogeneous, one- or multi-dimensional, semi- or non-linear equations...), to handle such dynamics.
@incollection{JEDP_2023____A6_0, author = {Thomas Giletti}, title = {Propagating fronts and terraces in multistable reaction-diffusion equations}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:6}, pages = {1--15}, publisher = {R\'eseau th\'ematique AEDP du CNRS}, year = {2023}, doi = {10.5802/jedp.677}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.677/} }
TY - JOUR AU - Thomas Giletti TI - Propagating fronts and terraces in multistable reaction-diffusion equations JO - Journées équations aux dérivées partielles N1 - talk:6 PY - 2023 SP - 1 EP - 15 PB - Réseau thématique AEDP du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.677/ DO - 10.5802/jedp.677 LA - en ID - JEDP_2023____A6_0 ER -
%0 Journal Article %A Thomas Giletti %T Propagating fronts and terraces in multistable reaction-diffusion equations %J Journées équations aux dérivées partielles %Z talk:6 %D 2023 %P 1-15 %I Réseau thématique AEDP du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.677/ %R 10.5802/jedp.677 %G en %F JEDP_2023____A6_0
Thomas Giletti. Propagating fronts and terraces in multistable reaction-diffusion equations. Journées équations aux dérivées partielles (2023), Talk no. 6, 15 p. doi : 10.5802/jedp.677. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.677/
[1] Jing An; Christopher Henderson; Lenya Ryzhik Quantitative steepness, semi-FKPP reactions, and pushmi-pullyu fronts, Arch. Ration. Mech. Anal., Volume 247 (2023), 88, 84 pages | MR | Zbl
[2] Sigurd Angenent The zero set of a solution of a parabolic equation, J. Reine Angew. Math., Volume 390 (1988), pp. 76-96 | MR | Zbl
[3] Donald G. Aronson; Hans F. Weinberger Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, Partial Differential Equations and Related Topics, (J. A. Goldstein, ed.) (Lecture Notes in Mathematics), Springer, 1975, pp. 5-49 | Zbl
[4] Donald G. Aronson; Hans F. Weinberger Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., Volume 30 (1978), pp. 33-76 | DOI | Zbl
[5] Henri Berestycki; François Hamel Generalized transition waves and their properties, Commun. Pure Appl. Math., Volume 65 (2012) no. 5, pp. 592-648 | DOI | MR | Zbl
[6] Maury Bramson Convergence of solutions of the Kolmogorov equation to travelling waves, Memoirs of the American Mathematical Society, 285, American Mathematical Society, 1983, 190 pages
[7] Arnaud Ducrot; Thomas Giletti; Hiroshi Matano Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations, Trans. Am. Math. Soc., Volume 366 (2014) no. 10, pp. 5541-5566 | DOI | MR | Zbl
[8] Jian Fang; Xiao-Qiang Zhao Bistable traveling waves for monotone semiflows with applications, J. Eur. Math. Soc., Volume 17 (2015) no. 9, pp. 2243-2288 | DOI | MR | Zbl
[9] Paul C. Fife; John B. McLeod The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., Volume 65 (1977) no. 4, pp. 335-361 | DOI | MR | Zbl
[10] Ronald A. Fisher The wave of advantageous genes, Ann. Eugenics, London, Volume 7 (1937), pp. 355-369 | DOI | Zbl
[11] V. A. Galaktionov; Petra J. Harwin Sturm’s theorems on zero sets in nonlinear parabolic equations, Sturm-Liouville theory, Birkhäuser, 2005, pp. 173-199 | DOI | Zbl
[12] Thomas Giletti; Ho-Youn Kim; Yong-Jung Kim Terrace solutions for non-Lipschitz multistable nonlinearities, SIAM J. Math. Anal., Volume 54 (2022) no. 4, pp. 4785-4805 | DOI | MR | Zbl
[13] Thomas Giletti; Hiroshi Matano Existence and uniqueness of propagating terraces, Commun. Contemp. Math., Volume 22 (2020) no. 6, 1950055, 38 pages | MR | Zbl
[14] Thomas Giletti; Luca Rossi Pulsating solutions for multidimensional bistable and multistable equations, Math. Ann., Volume 378 (2020) no. 3-4, pp. 1555-1611 | DOI | MR | Zbl
[15] François Hamel; James Nolen; Jean-Michel Roquejoffre; Lenya Ryzhik A short proof of the logarithmic Bramson correction in Fisher-KPP equations, Netw. Heterog. Media, Volume 8 (2013) no. 1, pp. 275-289 | DOI | MR | Zbl
[16] François Hamel; Luca Rossi Spreading sets and one-dimensional symmetry for reaction-diffusion equations, Sémin. Laurent Schwartz, EDP Appl., Volume 2021-2022 (2022), 11, 25 pages | Numdam | Zbl
[17] Christopher K. R. T. Jones Spherically symmetric solutions of a reaction-diffusion equation, J. Differ. Equations, Volume 49 (1983), pp. 142-169 | DOI | MR | Zbl
[18] Andrei N. Kolmogorov; Ivan G. Petrovsky; Nikolaĭ S. Piskunov Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. État Moscou, Sér. Int., Sect. A: Math. et Mécan., Volume 1 (1937) no. 6, pp. 1-26 | Zbl
[19] Fang-Hua Lin Nodal sets of solutions of elliptic and parabolic equations, Commun. Pure Appl. Math., Volume 44 (1991) no. 3, pp. 287-308 | MR | Zbl
[20] Hiroshi Matano Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 29 (1982), pp. 401-441 | MR | Zbl
[21] James D. Murray Mathematical biology. Vol. 1: An introduction, Interdisciplinary Applied Mathematics, 17, Springer, 2002 | DOI | MR
[22] James D. Murray Mathematical biology. Vol. 2: Spatial models and biomedical applications, Interdisciplinary Applied Mathematics, 18, Springer, 2003 | DOI | MR
[23] Grégoire Nadin Critical travelling waves for general heterogeneous one-dimensional reaction-diffusion equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 32 (2015) no. 4, pp. 841-873 | DOI | Numdam | MR | Zbl
[24] Peter Poláčik Planar propagating terraces and the asymptotic one-dimensional symmetry of solutions of semilinear parabolic equations, SIAM J. Math. Anal., Volume 49 (2017) no. 5, pp. 3716-3740 | DOI | MR | Zbl
[25] Lionel Roques Modèles de réaction-diffusion pour l’écologie spatiale, Editions Quae, 2013
[26] Frantz Rothe Convergence to pushed fronts, Rocky Mt. J. Math., Volume 11 (1981) no. 4, pp. 617-633 | MR | Zbl
[27] Kohei Uchiyama The behavior of solutions of some non-linear diffusion equations for large time, J. Math. Kyoto Univ., Volume 18 (1978) no. 3, pp. 453-508 | MR | Zbl
[28] Hans F. Weinberger Long-time behavior of a class of biological models, SIAM J. Math. Anal., Volume 13 (1982) no. 3, pp. 353-396 | DOI | MR | Zbl
[29] Hans F. Weinberger On spreading speeds and traveling waves for growth and migration models in a periodic habitat, J. Math. Biol., Volume 45 (2002) no. 6, pp. 511-548 | DOI | Zbl
[30] Hans F. Weinberger; Mark A. Lewis; Bingtuan Li Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., Volume 45 (2002) no. 3, pp. 183-218 | DOI | MR | Zbl
Cited by Sources: