We discuss the problem that consists in reconstructing a function from the modulus of its wavelet transform. In the case where the wavelets are Cauchy wavelets, all analytic functions are uniquely determined by this modulus. Additionally, although it is not uniformly continuous, the reconstruction operator enjoys a form of local stability. We describe these two results, and give an idea of the proof of the first one. To conclude, we present a related result on a more sophisticated operator, based on the wavelet transform modulus: the scattering transform.
@incollection{JEDP_2017____A10_0, author = {Ir\`ene Waldspurger}, title = {Wavelet transform modulus: phase retrieval and scattering}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:10}, pages = {1--10}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2017}, doi = {10.5802/jedp.660}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.660/} }
TY - JOUR AU - Irène Waldspurger TI - Wavelet transform modulus: phase retrieval and scattering JO - Journées équations aux dérivées partielles N1 - talk:10 PY - 2017 SP - 1 EP - 10 PB - Groupement de recherche 2434 du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.660/ DO - 10.5802/jedp.660 LA - en ID - JEDP_2017____A10_0 ER -
%0 Journal Article %A Irène Waldspurger %T Wavelet transform modulus: phase retrieval and scattering %J Journées équations aux dérivées partielles %Z talk:10 %D 2017 %P 1-10 %I Groupement de recherche 2434 du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.660/ %R 10.5802/jedp.660 %G en %F JEDP_2017____A10_0
Irène Waldspurger. Wavelet transform modulus: phase retrieval and scattering. Journées équations aux dérivées partielles (2017), Talk no. 10, 10 p. doi : 10.5802/jedp.660. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.660/
[1] E. J. Akutowicz On the determination of the phase of a Fourier integral, I, Transactions of the American Mathematical Society, Volume 83 (1956) no. 1, pp. 179-192
[2] R. Alaifari; I. Daubechies; P. Grohs; R. Yin Stable phase retrieval in infinite dimensions, preprint (2016) (http://arxiv.org/abs/1609.00034)
[3] J. Andén; S. Mallat Multiscale scattering for audio classification, Proceedings of the International Society of Music Information Retrieval 2011 Conference (2011), pp. 657-662
[4] R. Balan; P. Casazza; D. Edidin On signal reconstruction without noisy phase, Applied and Computational Harmonic Analysis, Volume 20 (2006), pp. 345-356
[5] R. Barakat; G. Newsam Necessary conditions for a unique solution to two-dimensional phase recovery, Journal of Mathematical Physics, Volume 25 (1984) no. 11, pp. 3190-3193
[6] P. Grohs; M. Rathmair Stable Gabor phase retrieval and spectral clustering, preprint (2017) (https://arxiv.org/abs/1706.04374)
[7] P. Jaming Uniqueness results in an extension of Pauli’s phase retrieval problem, Applied and Computational Harmonic Analysis, Volume 37 (2014), pp. 413-441
[8] S. Mallat Group invariant scattering, Communications in Pure and Applied Mathematics, Volume 65 (2012) no. 10, pp. 1331-1398
[9] S. Mallat; I. Waldspurger Phase retrieval for the Cauchy wavelet transform, Journal of Fourier Analysis and Applications, Volume 21 (2015) no. 6, pp. 1251-1309
[10] J.-C. Risset; D. L. Wessel Exploration of timbre by analysis and synthesis, The psychology of music (D. Deutsch, ed.), Academic Press, 1999, pp. 113-169
[11] L. Sifre; S. Mallat Rotation, scaling and deformation invariant scattering for texture discrimination, The IEEE Conference on Computer Vision and Pattern Recognition (2013), pp. 1233-1240
[12] M. Tschannen; T. Kramer; G. Marti; M. Heinzmann; T. Wiatowski Heart sound classification using deep structured features, Proceedings of computing in cardiology (2016), pp. 565-568
[13] I. Waldspurger Exponential decay of scattering coefficients, To appear in the Proceedings of SAMpling Theory and Applications (2017)
Cited by Sources: