We present a new approach to the study of singular multi-parameter multilinear Fourier multipliers via multiple vector-valued inequalities. This summarizes some of our results from [1] and [2]. The main example is the bi-parameter paraproduct , for which we prove estimates within the whole range of admissible Lebesgue estimates.
@incollection{JEDP_2016____A2_0, author = {Cristina Benea and Camil Muscalu}, title = {Mixed-norm estimates for paraproducts}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:2}, pages = {1--10}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2016}, doi = {10.5802/jedp.643}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.643/} }
TY - JOUR AU - Cristina Benea AU - Camil Muscalu TI - Mixed-norm estimates for paraproducts JO - Journées équations aux dérivées partielles N1 - talk:2 PY - 2016 SP - 1 EP - 10 PB - Groupement de recherche 2434 du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.643/ DO - 10.5802/jedp.643 LA - en ID - JEDP_2016____A2_0 ER -
%0 Journal Article %A Cristina Benea %A Camil Muscalu %T Mixed-norm estimates for paraproducts %J Journées équations aux dérivées partielles %Z talk:2 %D 2016 %P 1-10 %I Groupement de recherche 2434 du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.643/ %R 10.5802/jedp.643 %G en %F JEDP_2016____A2_0
Cristina Benea; Camil Muscalu. Mixed-norm estimates for paraproducts. Journées équations aux dérivées partielles (2016), Talk no. 2, 10 p. doi : 10.5802/jedp.643. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.643/
[1] Cristina Benea; Camil Muscalu Multiple Vector Valued Inequalities via the Helicoidal Method (2015) (http://arxiv.org/pdf/1511.04948v1.pdf)
[2] Cristina Benea; Camil Muscalu Quasi-Banach Valued Inequalities via the Helicoidal method (2016) (https://arxiv.org/pdf/1609.01090v1.pdf)
[3] Frédéric Bernicot Local estimates and global continuities in Lebesgue spaces for bilinear operators, Anal. PDE, Volume 1 (2008) no. 1, pp. 1-27 | DOI | MR
[4] Lennart Carleson On convergence and growth of partial sums of Fourier series, Acta. Math. (1966), pp. 135-157
[5] R. Coifman; Y. Meyer Wavelets, Calderón-Zygmund Operators and Multilinear Operators, Cambridge University Press, 1997
[6] Francesco Di Plinio; Yumeng Ou Banach-valued multilinear singular integrals (2015) (http://arxiv.org/abs/1506.05827, Online; accessed June 2016)
[7] Charles Fefferman Pointwise convergence of Fourier Series, The Annals of Mathematics (1973), pp. 551-571
[8] Jean-Lin Journé Calderón-Zygmund operators on product spaces, Revista Matemética Iberoamericana, Volume 1 (1985) no. 3, pp. 55-91 http://eudml.org/doc/39324
[9] Carlos Kenig; Gustavo Ponce; Luis Vega Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. (1993), pp. 527-620
[10] Michael Lacey; Christoph Thiele On Calderón’s conjecture, Ann. of Math. (2), Volume 149 (1999) no. 2, pp. 475-496 | DOI | MR
[11] Camil Muscalu; Jill Pipher; Terence Tao; Christoph Thiele Bi-parameter paraproducts, Acta Mathematica (2004), pp. 269-296
[12] Camil Muscalu; Jill Pipher; Terence Tao; Christoph Thiele Multi-parameter paraproducts, Rev. Mat. Iberoamericana (2006), pp. 963-976
[13] Camil Muscalu; Wilhem Schlag Classical and Multilinear Harmonic Analysis, Cambridge University Press, 2013
[14] Camil Muscalu; Terence Tao; Christoph Thiele Multi-linear operators given by singular multipliers, J. Amer. Math. Soc. (2002), pp. 469-496
[15] Zhuoping Ruan Multi-parameter Hardy spaces via discrete Littlewood-Paley theory, Anal. Theory Appl., Volume 26 (2010) no. 2, pp. 122-139
[16] Prabath Silva Vector Valued Inequalities for Families of Bilinear Hilbert Transforms and Applications to Bi-parameter Problems, J. Lond. Math. Soc. (2014), pp. 695-724
Cited by Sources: