Mersenne banner

Livres, Actes et Séminaires du Centre Mersenne

  • Livres
  • Séminaires
  • Congrès
  • Tout
  • Auteur
  • Titre
  • Bibliographie
  • Plein texte
NOT
Entre et
  • Tout
  • Auteur
  • Titre
  • Date
  • Bibliographie
  • Mots-clés
  • Plein texte
  • Précédent
  • Journées équations aux dérivées partielles
  • Année 2015
  • article no. 4
  • Suivant
Global well-posedness and scattering for small data for the 2D and 3D KP-II Cauchy problem
Herbert Koch1
1 Mathematisches Institut Universität Bonn Endenicher Allee 60 53115 Bonn Germany
Journées équations aux dérivées partielles (2015), article no. 4, 9 p.
  • Résumé

We discuss global well-posedness for the Kadomtsev-Petviashvili II in two and three space dimensions with small data. The crucial points are new bilinear estimates and the definition of the function spaces. As by-product we obtain that all solutions to small initial data scatter as t→±∞.

  • Détail
  • Export
  • Comment citer
DOI : 10.5802/jedp.633
Keywords: Kadomtsev-Petviashvili, Galilean transform, Bilinear estimate
Affiliations des auteurs :
Herbert Koch 1

1 Mathematisches Institut Universität Bonn Endenicher Allee 60 53115 Bonn Germany
  • BibTeX
  • RIS
  • EndNote
@incollection{JEDP_2015____A4_0,
     author = {Herbert Koch},
     title = {Global well-posedness and scattering for small data for the {2D} and {3D} {KP-II} {Cauchy} problem},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {4},
     pages = {1--9},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2015},
     doi = {10.5802/jedp.633},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.633/}
}
TY  - JOUR
AU  - Herbert Koch
TI  - Global well-posedness and scattering for small data for the 2D and 3D KP-II Cauchy problem
JO  - Journées équations aux dérivées partielles
PY  - 2015
SP  - 1
EP  - 9
PB  - Groupement de recherche 2434 du CNRS
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.633/
DO  - 10.5802/jedp.633
LA  - en
ID  - JEDP_2015____A4_0
ER  - 
%0 Journal Article
%A Herbert Koch
%T Global well-posedness and scattering for small data for the 2D and 3D KP-II Cauchy problem
%J Journées équations aux dérivées partielles
%D 2015
%P 1-9
%I Groupement de recherche 2434 du CNRS
%U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.633/
%R 10.5802/jedp.633
%G en
%F JEDP_2015____A4_0
Herbert Koch. Global well-posedness and scattering for small data for the 2D and 3D KP-II Cauchy problem. Journées équations aux dérivées partielles (2015), article  no. 4, 9 p. doi : 10.5802/jedp.633. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.633/
  • Bibliographie
  • Cité par

[1] Jean Bourgain On the Cauchy problem for the Kadomtsev-Petviashvili equation, Geom. Funct. Anal., Volume 3 (1993) no. 4, pp. 315-341 | DOI | MR | Zbl

[2] Martin Hadac On the local well-posedness of the Kadomtsev-Petviashvili II equation., Universität Dortmund (2007) (Ph. D. Thesis) | Zbl

[3] Martin Hadac Well-posedness for the Kadomtsev-Petviashvili II equation and generalisations, Trans. Amer. Math. Soc., Volume 360 (2008) no. 12, pp. 6555-6572 | DOI | MR | Zbl

[4] Martin Hadac; Sebastian Herr; Herbert Koch Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 26 (2009) no. 3, pp. 917-941 | DOI | Numdam | MR | Zbl

[5] Martin Hadac; Sebastian Herr; Herbert Koch Erratum to “Well-posedness and scattering for the KP-II equation in a critical space”, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 27 (2010) no. 3, pp. 971-972 | DOI | Numdam | MR | Zbl

[6] Pedro Isaza; Juan López; Jorge Mejía The Cauchy problem for the Kadomtsev-Petviashvili (KPII) equation in three space dimensions, Comm. Partial Differential Equations, Volume 32 (2007) no. 4-6, pp. 611-641 | DOI | MR | Zbl

[7] Pedro Isaza; Jorge Mejía Local and global Cauchy problems for the Kadomtsev-Petviashvili (KP-II) equation in Sobolev spaces of negative indices, Comm. Partial Differential Equations, Volume 26 (2001) no. 5-6, pp. 1027-1054 | DOI | MR | Zbl

[8] Markus Keel; Terence Tao Endpoint Strichartz estimates, Amer. J. Math., Volume 120 (1998) no. 5, pp. 955-980 http://muse.jhu.edu/journals/american_journal_of_mathematics/v120/120.5keel.pdf | MR | Zbl

[9] Christian Klein; Jean-Claude Saut Numerical study of blow up and stability of solutions of generalized Kadomtsev-Petviashvili equations, J. Nonlinear Sci., Volume 22 (2012) no. 5, pp. 763-811 | DOI | MR | Zbl

[10] Herbert Koch; Daniel Tataru Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math., Volume 58 (2005) no. 2, pp. 217-284 | DOI | MR | Zbl

[11] Herbert Koch; Daniel Tataru; Monica Vişan Dispersive Equations and Nonlinear Waves (2014)

[12] D. Lépingle La variation d’ordre p des semi-martingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Volume 36 (1976) no. 4, pp. 295-316 | MR | Zbl

[13] Terry J. Lyons Differential equations driven by rough signals, Rev. Mat. Iberoamericana, Volume 14 (1998) no. 2, pp. 215-310 | DOI | MR | Zbl

[14] H. Takaoka; N. Tzvetkov On the local regularity of the Kadomtsev-Petviashvili-II equation, Internat. Math. Res. Notices (2001) no. 2, pp. 77-114 | DOI | MR | Zbl

[15] Hideo Takaoka Well-posedness for the Kadomtsev-Petviashvili II equation, Adv. Differential Equations, Volume 5 (2000) no. 10-12, pp. 1421-1443 | MR | Zbl

[16] Nickolay Tzvetkov On the Cauchy problem for Kadomtsev-Petviashvili equation, Comm. Partial Differential Equations, Volume 24 (1999) no. 7-8, pp. 1367-1397 | DOI | MR | Zbl

Cité par Sources :

Diffusé par : Publié par : Développé par :
  • Nous suivre