We will present a unique continuation result for solutions of second order differential equations of real principal type with critical potential in (where is the number of variables) across non-characteristic pseudo-convex hypersurfaces. To obtain unique continuation we prove Carleman estimates, this is achieved by constructing a parametrix for the operator conjugated by the Carleman exponential weight and investigating its boundedness properties.
@incollection{JEDP_2003____A6_0, author = {David Dos Santos Ferreira}, title = {Sharp $L^p$ {Carleman} estimates and unique continuation}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {6}, pages = {1--12}, publisher = {Universit\'e de Nantes}, year = {2003}, doi = {10.5802/jedp.620}, zbl = {02079441}, mrnumber = {2050592}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.620/} }
TY - JOUR AU - David Dos Santos Ferreira TI - Sharp $L^p$ Carleman estimates and unique continuation JO - Journées équations aux dérivées partielles PY - 2003 SP - 1 EP - 12 PB - Université de Nantes UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.620/ DO - 10.5802/jedp.620 LA - en ID - JEDP_2003____A6_0 ER -
%0 Journal Article %A David Dos Santos Ferreira %T Sharp $L^p$ Carleman estimates and unique continuation %J Journées équations aux dérivées partielles %D 2003 %P 1-12 %I Université de Nantes %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.620/ %R 10.5802/jedp.620 %G en %F JEDP_2003____A6_0
David Dos Santos Ferreira. Sharp $L^p$ Carleman estimates and unique continuation. Journées équations aux dérivées partielles (2003), article no. 6, 12 p. doi : 10.5802/jedp.620. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.620/
[1] Brenner P., On estimates for the wave equation, Math. Z., 145, 251-254, 1975. | MR | Zbl
[2] Brenner P., estimates for Fourier integral operators related to hyperbolic equations, Math. Z., 152, 273-286, 1977. | MR | Zbl
[3] Dos Santos Ferreira D., Inégalités de Carleman pour des indices critiques et applications, PhD thesis, University of Rennes, 2002.
[4] Dos Santos Ferreira D., Strichartz estimates for non-selfadjoint operators and applications, to appear in Comm. PDE.
[5] Dos Santos Ferreira D., Sharp Carleman estimates and unique continuation, preprint.
[6] Escariauza L., Vega L., Carleman inequalities and the Heat operator II, Indiana Univ. Math. J., 50, 3, 2001, 1149-1169. | MR | Zbl
[7] Hörmander L., The analysis of linear partial differential operators IV, Springer-Verlag, 1985. | MR | Zbl
[8] Kapitanski L., Some generalisations of the Strichartz-Brenner inequality, Leningrad Math. J., 1, 3, 693-726, 1990. | MR | Zbl
[10] Jerison D., Kenig C.E., Unique continuation and absence of positive eigenvalues for Schrödinger operators, Adv. Math., 62, 1986, 118-134. | MR
[11] Keel M., Tao T., Endpoint Strichartz estimates, Amer. J. of Math, 120, 955-980, 1998. | MR | Zbl
[12] Koch H., Tataru D., Carleman estimates and unique continuation for second order elliptic equations with non-smooth coefficients, Comm. Pure Appl. Math., 54, 3, 339-360, 2001. | MR | Zbl
[13] Koch H., Tataru D., Dispersive estimates for principally normal operators and applications to unique continuation, preprint, 2003. | MR
[14] Kenig C.E., Ruiz A., Sogge C.D., Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J., 55, 2, 1987, 329-347. | MR | Zbl
[15] Smith H., A parametrix construction for wave equations with coefficients, J. Ann. Inst. Fourier, 48, 797-835, 1998. | Numdam | MR | Zbl
[16] Sogge C.D., Fourier integrals in classical analysis, Cambridge University Press, 1993. | MR | Zbl
[17] Sogge C.D., Oscillatory integrals, Carleman inequalities and unique continuation for second order elliptic differential equations, J. Amer. Soc., 2, 1989, 491-516. | MR | Zbl
[18] Sogge C.D., Uniqueness in Cauchy problems for hyperbolic differential operators, Trans. of AMS, 333, 2, 1992, 821-833. | MR | Zbl
[19] Strichartz R.S., Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44, 1977, 705-774. | Zbl
[20] Tataru D., The spaces and unique continuation for solutions to the semilinear wave equation, Comm. PDE, 21, 1996, 841-887. | MR | Zbl
[21] Treves F., Introduction to pseudo-differential and Fourier integral operators, Plenum Press, 1980. | MR | Zbl
[22] Wolff T., Unique continuation for | Δ u| ≤ V | ∇ u| and related problems, Rev. Mat. Iberoamericana 6, 3-4, 1990, 155-200. | MR | Zbl
[23] Zuily C., Uniqueness and non-uniqueness in the Cauchy problem, Progress in Math., Birkhaüser, 1983. | Zbl
Cited by Sources: