We will present a unique continuation result for solutions of second order differential equations of real principal type with critical potential in (where is the number of variables) across non-characteristic pseudo-convex hypersurfaces. To obtain unique continuation we prove Carleman estimates, this is achieved by constructing a parametrix for the operator conjugated by the Carleman exponential weight and investigating its boundedness properties.
@incollection{JEDP_2003____A6_0,
author = {David Dos Santos Ferreira},
title = {Sharp $L^p$ {Carleman} estimates and unique continuation},
booktitle = {},
series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
eid = {6},
pages = {1--12},
publisher = {Universit\'e de Nantes},
year = {2003},
doi = {10.5802/jedp.620},
zbl = {02079441},
mrnumber = {2050592},
language = {en},
url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.620/}
}
TY - JOUR AU - David Dos Santos Ferreira TI - Sharp $L^p$ Carleman estimates and unique continuation JO - Journées équations aux dérivées partielles PY - 2003 SP - 1 EP - 12 PB - Université de Nantes UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.620/ DO - 10.5802/jedp.620 LA - en ID - JEDP_2003____A6_0 ER -
%0 Journal Article %A David Dos Santos Ferreira %T Sharp $L^p$ Carleman estimates and unique continuation %J Journées équations aux dérivées partielles %D 2003 %P 1-12 %I Université de Nantes %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.620/ %R 10.5802/jedp.620 %G en %F JEDP_2003____A6_0
David Dos Santos Ferreira. Sharp $L^p$ Carleman estimates and unique continuation. Journées équations aux dérivées partielles (2003), article no. 6, 12 p.. doi: 10.5802/jedp.620
[1] , On estimates for the wave equation, Math. Z., 145, 251-254, 1975. | Zbl | MR
[2] , estimates for Fourier integral operators related to hyperbolic equations, Math. Z., 152, 273-286, 1977. | Zbl | MR
[3] , Inégalités de Carleman pour des indices critiques et applications, PhD thesis, University of Rennes, 2002.
[4] , Strichartz estimates for non-selfadjoint operators and applications, to appear in Comm. PDE.
[5] , Sharp Carleman estimates and unique continuation, preprint.
[6] , , Carleman inequalities and the Heat operator II, Indiana Univ. Math. J., 50, 3, 2001, 1149-1169. | Zbl | MR
[7] , The analysis of linear partial differential operators IV, Springer-Verlag, 1985. | Zbl | MR
[8] , Some generalisations of the Strichartz-Brenner inequality, Leningrad Math. J., 1, 3, 693-726, 1990. | Zbl | MR
[10] , , Unique continuation and absence of positive eigenvalues for Schrödinger operators, Adv. Math., 62, 1986, 118-134. | MR
[11] , Endpoint Strichartz estimates, Amer. J. of Math, 120, 955-980, 1998. | Zbl | MR
[12] , , Carleman estimates and unique continuation for second order elliptic equations with non-smooth coefficients, Comm. Pure Appl. Math., 54, 3, 339-360, 2001. | Zbl | MR
[13] , , Dispersive estimates for principally normal operators and applications to unique continuation, preprint, 2003. | MR
[14] , , , Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J., 55, 2, 1987, 329-347. | Zbl | MR
[15] , A parametrix construction for wave equations with coefficients, J. Ann. Inst. Fourier, 48, 797-835, 1998. | Zbl | MR | Numdam
[16] , Fourier integrals in classical analysis, Cambridge University Press, 1993. | Zbl | MR
[17] , Oscillatory integrals, Carleman inequalities and unique continuation for second order elliptic differential equations, J. Amer. Soc., 2, 1989, 491-516. | Zbl | MR
[18] , Uniqueness in Cauchy problems for hyperbolic differential operators, Trans. of AMS, 333, 2, 1992, 821-833. | Zbl | MR
[19] , Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44, 1977, 705-774. | Zbl
[20] , The spaces and unique continuation for solutions to the semilinear wave equation, Comm. PDE, 21, 1996, 841-887. | Zbl | MR
[21] , Introduction to pseudo-differential and Fourier integral operators, Plenum Press, 1980. | Zbl | MR
[22] , Unique continuation for | Δ u| ≤ V | ∇ u| and related problems, Rev. Mat. Iberoamericana 6, 3-4, 1990, 155-200. | Zbl | MR
[23] , Uniqueness and non-uniqueness in the Cauchy problem, Progress in Math., Birkhaüser, 1983. | Zbl
Cité par Sources :

