We concentrate on the analysis of the critical mass blowing-up solutions for the cubic focusing Schrödinger equation with Dirichlet boundary conditions, posed on a plane domain. We bound from below the blow-up rate for bounded and unbounded domains. If the blow-up occurs on the boundary, the blow-up rate is proved to grow faster than , the expected one. Moreover, we state that blow-up cannot occur on the boundary, under certain geometric conditions on the domain.
@incollection{JEDP_2003____A1_0, author = {Valeria Banica}, title = {Remarks on the blow-up for the {Schr\"odinger} equation with critical mass on a plane domain}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {1}, pages = {1--14}, publisher = {Universit\'e de Nantes}, year = {2003}, doi = {10.5802/jedp.615}, zbl = {02079436}, mrnumber = {2050587}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.615/} }
TY - JOUR AU - Valeria Banica TI - Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain JO - Journées équations aux dérivées partielles PY - 2003 SP - 1 EP - 14 PB - Université de Nantes UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.615/ DO - 10.5802/jedp.615 LA - en ID - JEDP_2003____A1_0 ER -
%0 Journal Article %A Valeria Banica %T Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain %J Journées équations aux dérivées partielles %D 2003 %P 1-14 %I Université de Nantes %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.615/ %R 10.5802/jedp.615 %G en %F JEDP_2003____A1_0
Valeria Banica. Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain. Journées équations aux dérivées partielles (2003), article no. 1, 14 p. doi : 10.5802/jedp.615. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.615/
[1] C. Antonini, Lower bounds for the minimal periodic blow-up solutions of critical nonlinear Schrödinger equation, Diff. Integral Eq. 15 (2002), no. 6, 749-768. | MR | Zbl
[2] H. Brézis, T. Gallouët, Nonlinear Schrödinger evolution equation, Nonlinear Analysis, Theory Methods Appl. 4 (1980), no. 4, 677-681. | MR | Zbl
[3] N. Burq, P. Gérard, N. Tzvetkov, Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal. 13 (2003), 1-19. | MR | Zbl
[4] T. Cazenave, An introduction to nonlinear Schrödinger equations, Textos de Métodos Matemáticos 26, Instituto de Matemática-UFRJ, Rio de Janeiro, RJ (1996).
[5] I. Gallagher, P. Gérard, Profile decomposition for the wave equation outside a convex obstacle, J. Math. Pures Appl. (9) 80 (2001), no. 1, 1-49. | MR | Zbl
[6] J. Ginibre, G. Velo, On a class of Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal. 32 (1979), no. 1, 1-71. | MR | Zbl
[7] R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys. 18 (1977), no. 9, 1794-1797. | MR | Zbl
[8] T. Kato, On nonlinear Schrödinger equations, Ann. I. H. P. Physique Théorique 46 (1987), no. 1, 113-129. | Numdam | MR | Zbl
[9] O. Kavian, A remark on the blowing-up of solutions to the Cauchy problem for nonlinear Schrödinger equations, Trans. Amer. Math. Soc. 299 (1987), no. 1, 193-203. | MR | Zbl
[10] M. K. Kwong, Uniqueness of positive solutions of in , Arch. Rat. Mech. Ann. 105 (1989), no. 3, 243-266. | MR | Zbl
[11] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincarés Anal. Non Linéaire 1 (1984), no. 2, 109-145. | Numdam | MR | Zbl
[12] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223-283. | Numdam | MR | Zbl
[13] M. Maris, Existence of nonstationary bubbles in higher dimensions, J. Math. Pures. Appl. 81 (2002), 1207-1239. | MR | Zbl
[14] F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equation with critical power, Duke Math. J. 69 (1993), no. 2, 427-454. | MR | Zbl
[15] F. Merle, P. Raphaël, Blow-up dynamic and upper bound on blow-up rate for critical non linear Schrödinger equation, Université de Cergy-Pontoise, preprint (2003).
[16] F. Merle, P. Raphaël, On blow-up profile for critical non linear Schrödinger equation, Université de Cergy-Pontoise, preprint (2003).
[17] T. Ogawa, T. Ozawa, Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger equations, J. Math. Anal. Appl. 155 (1991), no. 2, 531-540. | MR | Zbl
[18] T. Ogawa, Y. Tsutsumi, Blow-up solutions for the nonlinear Schrödinger equation with quartic potential and periodic boundary conditions, Springer Lecture Notes in Math. 1450 (1990), 236-251. | MR | Zbl
[19] M. V. Vladimirov, On the solvability of mixed problem for a nonlinear equation of Schrödinger type, Dokl. Akad. Nauk SSSR 275 (1984), no. 4, 780-783. | MR | Zbl
[20] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolate estimates, Comm. Math. Phys. 87 (1983), no. 4, 567-576. | MR | Zbl
[21] M. I. Weinstein, On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Comm. Part. Diff. Eq. 11 (1986), no. 5, 545-565. | MR | Zbl
[22] M. I. Weinstein, Modulation stability of ground states of nonlinear Schrödinger equations, Siam. J. Math. Anal. 16 (1985), no. 3, 472-491. | MR | Zbl
[23] V. E. Zakharov, Collapse of Lagmuir waves, Sov. Phys. JETP 35 (1972), 908-914.
Cited by Sources: