This paper deals with the global well-posedness of the D axisymmetric Euler equations for initial data lying in critical Besov spaces . In this case the BKM criterion is not known to be valid and to circumvent this difficulty we use a new decomposition of the vorticity .
@incollection{JEDP_2008____A4_0, author = {Hammadi Abidi and Taoufik Hmidi and Sahbi Keraani}, title = {On the global existence for the axisymmetric {Euler} equations}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {4}, pages = {1--17}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2008}, doi = {10.5802/jedp.48}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.48/} }
TY - JOUR AU - Hammadi Abidi AU - Taoufik Hmidi AU - Sahbi Keraani TI - On the global existence for the axisymmetric Euler equations JO - Journées équations aux dérivées partielles PY - 2008 SP - 1 EP - 17 PB - Groupement de recherche 2434 du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.48/ DO - 10.5802/jedp.48 LA - en ID - JEDP_2008____A4_0 ER -
%0 Journal Article %A Hammadi Abidi %A Taoufik Hmidi %A Sahbi Keraani %T On the global existence for the axisymmetric Euler equations %J Journées équations aux dérivées partielles %D 2008 %P 1-17 %I Groupement de recherche 2434 du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.48/ %R 10.5802/jedp.48 %G en %F JEDP_2008____A4_0
Hammadi Abidi; Taoufik Hmidi; Sahbi Keraani. On the global existence for the axisymmetric Euler equations. Journées équations aux dérivées partielles (2008), article no. 4, 17 p. doi : 10.5802/jedp.48. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.48/
[1] J. T. Beale, T. Kato, A. Majda, Remarks on the Breakdown of Smooth Solutions for the Euler Equations, Comm. Math. Phys. 94 (1984) 61-66. | MR | Zbl
[2] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, 1976. | MR | Zbl
[3] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. de l’École Norm. Sup. 14 (1981) 209-246. | Numdam | MR | Zbl
[4] D. Chae, Local existence and blow-up criterion for the Euler equations in the Besov spaces, Asymptot. Anal. 38 (2004), no. 3-4, 339-358. | MR | Zbl
[5] J.-Y. Chemin, Perfect incompressible Fluids, Clarendon press, Oxford, 1998. | MR | Zbl
[6] P. Constantin, C. Fefferman, A. Majda, J. Geometric constraints on potentially singular solutions for the 3D Euler equations, Comm. Partial Diff. Eqs. 21 (1996), no. 3-4, 559-571. | MR | Zbl
[7] R. Danchin, Axisymmetric incompressible flows with bounded vorticity, Russian Math. Surveys 62 (2007), no 3, 73-94. | MR | Zbl
[8] T. Hmidi, S. Keraani, Incompressible viscous flows in borderline Besov spaces, Arch. Ration. Mech. Anal. 189 (2008), no. 2, 283-300. | MR | Zbl
[9] T. Kato, Nonstationary flows of viscous and ideal fluids in , J. Functional analysis, 9 (1972), 296-305. | MR | Zbl
[10] R. O’Neil, Convolution operators and L(p,q) spaces, Duke Math. J. 30 (1963), 129-142. | MR | Zbl
[11] H. C. Pak, Y. J. Park, Existence of solution for the Euler equations in a critical Besov space Comm. Partial Diff. Eqs, 29 (2004) 1149-1166. | MR | Zbl
[12] J. Peetre, New thoughts on Besov spaces, Duke University Mathematical Series 1, Durham N. C. 1976. | MR | Zbl
[13] X. Saint Raymond, Remarks on axisymmetric solutions of the incompressible Euler system, Comm. Partial Differential Equations 19 (1994), no. 1-2, 321-334. | MR | Zbl
[14] T. Shirota, T. Yanagisawa, Note on global existence for axially symmetric solutions of the Euler system, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), no. 10, 299–304. | MR | Zbl
[15] M. R. Ukhovskii, V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space, Prikl. Mat. Meh. 32 (1968), no. 1, 59-69. | MR | Zbl
[16] M. Vishik, Hydrodynamics in Besov Spaces, Arch. Rational Mech. Anal 145, 197-214, 1998. | MR | Zbl
Cited by Sources: