@article{TSG_2001-2002__20__9_0, author = {Marc Herzlich}, title = {Minimal surfaces, the {Dirac} operator and the {Penrose} inequality}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {9--16}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {20}, year = {2001-2002}, doi = {10.5802/tsg.324}, zbl = {1038.58043}, mrnumber = {1987634}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.324/} }
TY - JOUR AU - Marc Herzlich TI - Minimal surfaces, the Dirac operator and the Penrose inequality JO - Séminaire de théorie spectrale et géométrie PY - 2001-2002 SP - 9 EP - 16 VL - 20 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.324/ DO - 10.5802/tsg.324 LA - en ID - TSG_2001-2002__20__9_0 ER -
%0 Journal Article %A Marc Herzlich %T Minimal surfaces, the Dirac operator and the Penrose inequality %J Séminaire de théorie spectrale et géométrie %D 2001-2002 %P 9-16 %V 20 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.324/ %R 10.5802/tsg.324 %G en %F TSG_2001-2002__20__9_0
Marc Herzlich. Minimal surfaces, the Dirac operator and the Penrose inequality. Séminaire de théorie spectrale et géométrie, Tome 20 (2001-2002), pp. 9-16. doi : 10.5802/tsg.324. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.324/
[1] R. Arnowitt, S. Deser, and C.W. Misner, Coordinate invariance and energy expressions in General Relativity, Phys. Rev.122 ( 1961), 997-1006. | MR | Zbl
[2] M. Fatiyah, V.K. Patodi, and I.M. Singer, Spectral asymmetry and Riemannian geometry I, Math. Proc. Camb. PhD. Soc. 77 ( 1975), 43-69. | MR | Zbl
[3] R. Bartnik, The mass of an asymptotically flat manifold, Commun. Pure. Appl. Math. 39 ( 1986), 661-693. | MR | Zbl
[4] H. Bray, Proof of the Riemannian Penrose conjecture using the positive mass theorem, J. Difif. Geom ( 2002), to appear. | Zbl
[5] H. Bray and F. Finster, Curvature estimates and the positive mass theorem, preprint ( 1998). | MR | Zbl
[6] M. Cai and G. Galloway, Least area tori and 3-manifolds of nonnegative scalar curvature, Math Z.223 ( 1997), 387-395. | MR | Zbl
[7] M. Cai and G. Galloway, Rigidity of area minimizing tori in 3-manifolds of non negative scalar curvature, Comm. Anal. Geom. 8 ( 2000), 565-573. | MR | Zbl
[8] M. Herzlich, A Penrose-like inequality for the mass of Riemannian asymptotically flat manifolds, Commun. Math. Phys. 188 ( 1997), 121-133. | MR | Zbl
[9] O. Hijazi, A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors, Commun. Math. Phys 104 ( 1986), 151-162. | MR | Zbl
[10] O. Hijazi, Première valeur propre de l'opérateur de Dirac et nombre de Yamabe, C.R. Acad. Sci. Paris 313 ( 1991), 865-868. | MR | Zbl
[11] G. Huisken and T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Diff. Geom. ( 2002), to appear. | MR | Zbl
[12] M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Diff. Geom. 6 ( 1971), 247-258. | MR | Zbl
[13] T.H. Parker and C.H. Taubes, On Witten's proof of the positive energy theorem, Commun. Math. Phys. 84 ( 1982), 223-238. | MR | Zbl
[14] R. Penrose, Naked singularities, Ann. N.Y. Acad Sci. 224 ( 1973), 125-134. | Zbl
[15] R. Schoen and S.T. Yau, On the proof of the positive mass conjecture in General Relativity, Commun. Math. Phys 65 ( 1979), 45-76. | MR | Zbl
[16] E. Witten, A new proof of the positive energy theorem, Commun. Math. Phys. 80 ( 1981), 381 -402. | MR | Zbl
Cité par Sources :