We estimate the spreading of the solution of the Schrödinger equation asymptotically in time, in term of the fractal properties of the associated spectral measures. For this, we exhibit a lower bound for the moments of order at time for the state defined by . We show that this lower bound can be expressed in term of the generalized Rényi dimension of the spectral measure associated to the hamiltonian and the state . We especially concentrate on continuous models.
@incollection{JEDP_2000____A1_0, author = {Jean-Marie Barbaroux and Fran\c{c}ois Germinet and Serguei Tcheremchantsev}, title = {Quantum diffusion and generalized {R\'enyi} dimensions of spectral measures}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {1}, pages = {1--16}, publisher = {Universit\'e de Nantes}, year = {2000}, zbl = {01808691}, mrnumber = {2001f:81042}, language = {en}, url = {https://proceedings.centre-mersenne.org/item/JEDP_2000____A1_0/} }
TY - JOUR AU - Jean-Marie Barbaroux AU - François Germinet AU - Serguei Tcheremchantsev TI - Quantum diffusion and generalized Rényi dimensions of spectral measures JO - Journées équations aux dérivées partielles PY - 2000 SP - 1 EP - 16 PB - Université de Nantes UR - https://proceedings.centre-mersenne.org/item/JEDP_2000____A1_0/ LA - en ID - JEDP_2000____A1_0 ER -
%0 Journal Article %A Jean-Marie Barbaroux %A François Germinet %A Serguei Tcheremchantsev %T Quantum diffusion and generalized Rényi dimensions of spectral measures %J Journées équations aux dérivées partielles %D 2000 %P 1-16 %I Université de Nantes %U https://proceedings.centre-mersenne.org/item/JEDP_2000____A1_0/ %G en %F JEDP_2000____A1_0
Jean-Marie Barbaroux; François Germinet; Serguei Tcheremchantsev. Quantum diffusion and generalized Rényi dimensions of spectral measures. Journées équations aux dérivées partielles (2000), article no. 1, 16 p. https://proceedings.centre-mersenne.org/item/JEDP_2000____A1_0/
[1] I.N. Akhiezer, I.M. Glazman, Theory of linear Operators in Hilbert spaces Vol II, Ungar, New-York, 1963.
[2] J.-M. Barbaroux, J.-M. Combes, R. Montcho, Remarks on the relation between quantum dynamics and fractal spectra, J. Math. Anal and Appl. 213 (1997), 698-722. | MR | Zbl
[3] J.-M. Barbaroux, F. Germinet, S. Tcheremchantsev, Nonlinear variation of diffusion exponents in quantum dynalics, C.R. Acad. Sci., Parist.330 Série I (1999), 409-414. Fractal dimensions and the phenomenon of intermittency in quantum dynamics, Preprint (2000). | Zbl
[4] J.-M. Barbaroux, F. Germinet, S. Tcheremchantsev, Generalized fractal dimensions : equivalences and basic properties, Preprint (2000).
[5] J.-M. Barbaroux, H. Schulz-Baldes, Anomalous quantum transport in presence of self-similar spectra, Ann. Inst. Henri Poincaré Vol 71, Numero 5 (1999), 1-21. | Numdam | MR | Zbl
[6] J.-M. Barbaroux, S. Tcheremchantsev, Universal Lower Bounds for Quantum Diffusion, J. Funct. Anal. 168 (1999), 327-354. | MR | Zbl
[7] J.-M. Combes, Connection between quantum dynamics and spectral properties of time evolution operators in «Differential Equations and Applications in Mathematical Physics», Eds. W.F. Ames, E.M. Harrel, J.V. Herod (Academic Press 1993), 59-69. | MR | Zbl
[8] J.-M. Combes, G. Mantica, A sparse potential test of Guarneri bounds, to appear in the Proceeding of the Conference on Asymptotics Properties of Time Evolutions in Classical and Quantum Systems, Bologna, 1999.
[9] Del Rio R., Jitomirskaya S., Last Y., Simon B., Operators with singular continuous spectrum IV : Hausdorff dimensions, rank one perturbations and localization, J. d'Analyse Math. 69 (1996), 153-200. | MR | Zbl
[10] K.-J. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Mathematics, No 85, Cambridge Univ. Press, UK, 1985. | MR | Zbl
[11] I. Guarneri, Spectral properties of quantum diffusion on discrete lattices, Europhys. Lett. 10 (1989), 95-100; On an estimate concerning quantum diffusion in the presence of a fractal spectrum, Europhys. Lett. 21 (1993), 729-733.
[12] I. Guarneri, H. Schulz-Baldes, Lower bounds on wave packet propagation by packing dimensions of spectral measures, Math. Phys. Elec. J. 5, paper 1 (1999). | MR | Zbl
[13] I. Guarneri, H. Schulz-Baldes, Intermittent lower bound on quantum diffusion, Lett. Math. Phys. 49 (1999), 317-324. | MR | Zbl
[14] S. Jitomirskaya, Y. Last : Dimensional Hausdorff properties of singular continuous spectra Phys. Rev. Letters 76 (1996), 1765-1769. | MR | Zbl
[15] Y. Last, Quantum Dynamics and Decomposition of Singular Continuous Spectrum, J. Funct. Anal 142 (1996), 406-445. | MR | Zbl
[16] G. Mantica. Quantum intermittency in almost periodic systems derived from their spectral properties, Physica D 103 (1997), 576-589; Wave Propagation in Almost-Periodic Structures, Physica D 109 (1997), 113-127. | Zbl
[17] R.S. Strichartz: Fourier asymptotics of fractal measures, J. Funct. Anal. 89 (1990), 154-187. | MR | Zbl
[18] B. Simon, Schrödinger semi-groups, Bull. Amer. Math. Soc. Vol. 7, n° 3 (1982), 447-526. | MR | Zbl
[19] S.J. Taylor, C. Tricot, Packing Measure, and its Evaluation for a Brownian Path, Trans. Amer. Math. Soc. 288 (1985), 679-699. | MR | Zbl