In this paper we prove the existence of infinitely many solutions of the Dirac-Fock equations with electrons turning around a nucleus of atomic charge , satisfying and , where is the fundamental constant of the electromagnetic interaction (approximately 1/137). This work is an improvement of an article of Esteban-Séré, where the same result was proved under more restrictive assumptions on .
@incollection{JEDP_2000____A12_0,
author = {\'Eric Paturel},
title = {Solutions of the {Dirac-Fock} equations without projector},
booktitle = {},
series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
eid = {12},
pages = {1--10},
year = {2000},
publisher = {Universit\'e de Nantes},
doi = {10.5802/jedp.576},
language = {en},
url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.576/}
}
TY - JOUR AU - Éric Paturel TI - Solutions of the Dirac-Fock equations without projector JO - Journées équations aux dérivées partielles PY - 2000 SP - 1 EP - 10 PB - Université de Nantes UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.576/ DO - 10.5802/jedp.576 LA - en ID - JEDP_2000____A12_0 ER -
Éric Paturel. Solutions of the Dirac-Fock equations without projector. Journées équations aux dérivées partielles (2000), article no. 12, 10 p.. doi: 10.5802/jedp.576
[1] and . On the evaluation of the norm of an integral operator associated with the stability of one-electron atoms. Proc. Roy. Soc. Edinburgh Sect. A, 128 (5):993-1005, 1998. | MR | Zbl
[2] and . Morse-type index theory for flows and periodic solutions for Hamiltonian equations. Comm. Pure Appl. Math., 37 (2):207-253, 1984. | MR | Zbl
[3] . Relativistic Dirac-Fock expectation values for atoms with Z = 1 to Z = 120. Atomic Data and Nuclear Data Table, 12:311-406, 1973.
[4] and . Solutions of the Dirac-Fock equations for atoms and molecules. Comm. Math. Phys., 203 (3):499-530, 1999. | MR | Zbl
[5] . Relativistic Calculation of Atomic Structures. Adv. Phys., 19:747-811, 1970.
[6] . Relativistic self-consistent field theory for closed-shell atoms. Phys. Rev., 154:17-39, 1967.
[7] and . The Hartree-Fock theory for Coulomb systems. Comm. Math. Phys., 53 (3):185-194, 1977. | MR
[8] . Solutions of Hartree-Fock equations for Coulomb systems. Comm. Math. Phys., 109 (1):33-97, 1987. | MR | Zbl
[9] . Solutions of the Dirac-Fock equations without projector. Cahiers du Ceremade preprint 9954, mp_arc preprint 99-476, to appear in Annales Henri Poincaré (Birkhäuser). | Zbl
[10] . The relativistic self-consistent field. Proc. Roy. Soc., A 152:625-649, 1935. | JFM | Zbl
[11] . Lower bound for the ground state energy of the no-pair Hamiltonian. Phys. Lett. B, 405(3-4):293-296, 1997. | MR
[12] . Strict positivity of a relativistic Hamiltonian due to Brown and Ravenhall. Bull. London Math. Soc., 30(3):283-290, 1998. | MR | Zbl
Cité par Sources :

