We study the theory of scattering for the Hartree equation with long range potentials. We prove the existence of modified wave operators with no size restriction on the data and we determine the asymptotic behaviour in time of solutions in the range of the wave operators.
@incollection{JEDP_1999____A17_0, author = {Jean Ginibre and Giorgio Velo}, title = {Long range scattering and modified wave operators for {Hartree} equations}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {17}, pages = {1--9}, publisher = {Universit\'e de Nantes}, year = {1999}, zbl = {01810590}, mrnumber = {2000h:35130}, language = {en}, url = {https://proceedings.centre-mersenne.org/item/JEDP_1999____A17_0/} }
TY - JOUR AU - Jean Ginibre AU - Giorgio Velo TI - Long range scattering and modified wave operators for Hartree equations JO - Journées équations aux dérivées partielles PY - 1999 SP - 1 EP - 9 PB - Université de Nantes UR - https://proceedings.centre-mersenne.org/item/JEDP_1999____A17_0/ LA - en ID - JEDP_1999____A17_0 ER -
%0 Journal Article %A Jean Ginibre %A Giorgio Velo %T Long range scattering and modified wave operators for Hartree equations %J Journées équations aux dérivées partielles %D 1999 %P 1-9 %I Université de Nantes %U https://proceedings.centre-mersenne.org/item/JEDP_1999____A17_0/ %G en %F JEDP_1999____A17_0
Jean Ginibre; Giorgio Velo. Long range scattering and modified wave operators for Hartree equations. Journées équations aux dérivées partielles (1999), article no. 17, 9 p. https://proceedings.centre-mersenne.org/item/JEDP_1999____A17_0/
[1] T. Cazenave, An introduction to nonlinear Schrödinger equations, Text. Met. Mat. 26, Inst. Mat., Rio de Janeiro (1993).
[2] J. Derezinski, C. Gérard, Scattering Theory of Classical and Quantum N-Particle Systems, Springer, Berlin, 1997. | MR | Zbl
[3] J. Ginibre, T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension n ≥ 2, Commun. Math. Phys. 151 (1993), 619-645. | MR | Zbl
[4] J. Ginibre, G. Velo, On a class of nonlinear Schrödinger equations with non-local interaction, Math. Z. 170 (1980), 109-136. | EuDML | MR | Zbl
[5] J. Ginibre, G. Velo, Long range scattering and modified wave operators for some Hartree type equations I, Rev. Math. Phys., to appear. | Zbl
[6] J. Ginibre, G. Velo, Long range scattering and modified wave operators for some Hartree type equations II, Preprint, Orsay 1999. | Zbl
[7] N. Hayashi, P. I. Naumkin, Scattering theory and large time asymptotics of solutions to Hartree type equations with a long range potential, Preprint, 1997.
[8] N. Hayashi, P. I. Naumkin, Remarks on scattering theory and large time asymptotics of solutions to Hartree type equations with a long range potential, SUT J. of Math. 34 (1998), 13-24. | MR | Zbl
[9] N. Hayashi, Y. Tsutsumi, Scattering theory for Hartree type equations, Ann. IHP (Phys. Théor.) 46 (1987), 187-213. | EuDML | Numdam | MR | Zbl
[10] L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. IV, Springer, Berlin, 1985. | Zbl
[11] H. Nawa, T. Ozawa, Nonlinear scattering with nonlocal interaction, Commun. Math. Phys. 146 (1992), 259-275. | MR | Zbl
[12] T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension, Commun. Math. Phys. 139 (1991), 479-493. | MR | Zbl
[13] D.R. Yafaev, Wave operators for the Schrödinger equation, Theor. Mat. Phys. 45 (1980), 992-998. | MR | Zbl