Mersenne banner

Livres, Actes et Séminaires du Centre Mersenne

  • Livres
  • Séminaires
  • Congrès
  • Tout
  • Auteur
  • Titre
  • Bibliographie
  • Plein texte
NOT
Entre et
  • Tout
  • Auteur
  • Titre
  • Date
  • Bibliographie
  • Mots-clés
  • Plein texte
  • Précédent
  • Journées équations aux dérivées partielles
  • Année 1999
  • article no. 13
  • Suivant
On the L 2 -instability and L 2 -controllability of steady flows of an ideal incompressible fluid
Alexander Shnirelman
Journées équations aux dérivées partielles (1999), article no. 13, 8 p.
  • Résumé

In the existing stability theory of steady flows of an ideal incompressible fluid, formulated by V. Arnold, the stability is understood as a stability with respect to perturbations with small in L 2 vorticity. Nothing has been known about the stability under perturbation with small energy, without any restrictions on vorticity; it was clear that existing methods do not work for this (the most physically reasonable) class of perturbations. We prove that in fact, every nontrivial steady flow is unstable in L 2 ; moreover, every flow may be transformed into any other one, with the same energy and momentum, with the help of an appropriately chosen perturbation with arbitrary small energy. This phenomenon reminds the Arnold’s diffusion. This result is proven by the direct construction of a growing perturbation, which is done by a variational method.

  • Détail
  • Export
  • Comment citer
EuDML   MR   Zbl
  • BibTeX
  • RIS
  • EndNote
@incollection{JEDP_1999____A13_0,
     author = {Alexander Shnirelman},
     title = {On the ${L}^2$-instability and ${L}^2$-controllability of steady flows of an ideal incompressible fluid},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {13},
     pages = {1--8},
     publisher = {Universit\'e de Nantes},
     year = {1999},
     mrnumber = {1718998},
     zbl = {01810586},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/item/JEDP_1999____A13_0/}
}
TY  - JOUR
AU  - Alexander Shnirelman
TI  - On the ${L}^2$-instability and ${L}^2$-controllability of steady flows of an ideal incompressible fluid
JO  - Journées équations aux dérivées partielles
PY  - 1999
SP  - 1
EP  - 8
PB  - Université de Nantes
UR  - https://proceedings.centre-mersenne.org/item/JEDP_1999____A13_0/
LA  - en
ID  - JEDP_1999____A13_0
ER  - 
%0 Journal Article
%A Alexander Shnirelman
%T On the ${L}^2$-instability and ${L}^2$-controllability of steady flows of an ideal incompressible fluid
%J Journées équations aux dérivées partielles
%D 1999
%P 1-8
%I Université de Nantes
%U https://proceedings.centre-mersenne.org/item/JEDP_1999____A13_0/
%G en
%F JEDP_1999____A13_0
Alexander Shnirelman. On the ${L}^2$-instability and ${L}^2$-controllability of steady flows of an ideal incompressible fluid. Journées équations aux dérivées partielles (1999), article  no. 13, 8 p. https://proceedings.centre-mersenne.org/item/JEDP_1999____A13_0/
  • Bibliographie
  • Cité par

[A1] V. Arnold, Sur la Géométrie diffé rentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier 16 (1966), 316-361. | Numdam | MR | Zbl

[A2] V. Arnold, On the a priori estimate in the theory of hydrodynamical stability, Amer. Math. Soc. Transl. 19 (1969), 267-269. | Zbl

[A3] V. Arnold, Mathematical methods of classical mechanics, Springer-Verlag, New York, 1989. | MR | Zbl

[A-K] V. Arnold, B. Khesin, Topological methods in hydrodynamics, Applied Mathematical Sciences, v. 125, Springer-verlag, 1998. | MR | Zbl

[B] Y. Brenier, The least action principle and the related concept of generalized flows for incompressible perfect fluids, J. Amer. Math. Soc. 2 (1989), no. 2, 225-255. | MR | Zbl

[M-P] C. Marchioro, M. Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Applied Mathematical Sciences, v. 96, Springer-Verlag, 1994. | MR | Zbl

[S] A. Shnirelman, The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid, Math. USSR Sbornik 56 (1987), no. 1, 79-105. | Zbl

Diffusé par : Publié par : Développé par :
  • Nous suivre