I shall discuss joint work with John L. Lewis on the solvability of boundary value problems for the heat equation in non-cylindrical (i.e., time-varying) domains, whose boundaries are in some sense minimally smooth in both space and time. The emphasis will be on the Neumann problem with data in . A somewhat surprising feature of our results is that, in contrast to the cylindrical case, the optimal results hold when , with the situation getting progressively worse as approaches . In particular, in our setting, the Neumann problem fails to be solvable when the data is taken to belong to the Hardy space .
@incollection{JEDP_1998____A6_0,
author = {Steve Hofmann and John L. Lewis},
title = {The ${L}^p$ {Neumann} problem for the heat equation in non-cylindrical domains},
booktitle = {},
series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
eid = {6},
pages = {1--7},
publisher = {Universit\'e de Nantes},
year = {1998},
doi = {10.5802/jedp.535},
mrnumber = {1640379},
language = {en},
url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.535/}
}
TY - JOUR
AU - Steve Hofmann
AU - John L. Lewis
TI - The ${L}^p$ Neumann problem for the heat equation in non-cylindrical domains
JO - Journées équations aux dérivées partielles
PY - 1998
SP - 1
EP - 7
PB - Université de Nantes
UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.535/
DO - 10.5802/jedp.535
LA - en
ID - JEDP_1998____A6_0
ER -
%0 Journal Article
%A Steve Hofmann
%A John L. Lewis
%T The ${L}^p$ Neumann problem for the heat equation in non-cylindrical domains
%J Journées équations aux dérivées partielles
%D 1998
%P 1-7
%I Université de Nantes
%U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.535/
%R 10.5802/jedp.535
%G en
%F JEDP_1998____A6_0
Steve Hofmann; John L. Lewis. The ${L}^p$ Neumann problem for the heat equation in non-cylindrical domains. Journées équations aux dérivées partielles (1998), article no. 6, 7 p.. doi: 10.5802/jedp.535
[Br1] , The method of layer potentials for the heat equation in Lipschitz cylinders, Amer. J. Math. 111 (1989), 359-379. | MR | Zbl
[Br2] , The initial-Neumann problem for the heat equation in Lipschitz cylinders Trans. A.M.S. 320 (1990), 1-52. | MR | Zbl
[D] , Poisson semigroups and singular integrals, Proc. A.M.S. 97 (1986), 41-48. | MR | Zbl
[DK] and , Hardy spaces and the Neumann problem in Lp for Laplace's equation in Lipschitz domains, Ann. of Math. 125 (1987), 437-466. | MR | Zbl
[DKPV] , , and , Area integral estimates and maximum principles for higher order elliptic equations and systems on Lipschitz domains, to appear. | Numdam | Zbl
[FR] and , Symbolic calculus of kernels with mixed homogeneity, in Singular Integrals, A.P. Calderón, ed., Proc. Symp. Pure Math., Vol. 10, A.M.S. Providence, 1967, pp. 106-127. | MR | Zbl
[FS] and , Estimates of caloric measure and the initial-Dirichlet problem for the heat equation in Lipschitz cylinders, Trans. Amer. Math. Soc. 279 (1983), 635-650. | MR | Zbl
[H] , A characterization of commutators of parabolic singular inegrals, in Fourier Analysis and Parital Differential Equations, J. García-Cuerva, E. Hernández, F. Soria, and J.-L. Torrea, eds., Studies in Advanced Mathematics, CRC press, Boca Raton, 1995, pp. 195-210. | MR | Zbl
[HL] and , L2 solvability and representiation by caloric layer potentials in time-varying domains, Ann. of Math, 144 (1996), 349-420. | MR | Zbl
[K] , Elliptic boundary value problems on Lipschitz domains, in Beijing Lecutres in harmonic Analysis, E.M. Stein, ed., Ann. of Math Studies 112 (1986), 131-183. | MR | Zbl
[LM] and , The method of layer potentials for the heat equation in time varying domains, Memoirs A.M.S. Vol. 114, Number 545, 1995. | MR | Zbl
[Stz] , Bounded mean oscillation and Sobolev spaces, Indiana U. Math. J. 29 (1980), 539-558. | MR | Zbl
[V] , Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. of Functional Analysis 59 (1984), 572-611. | MR | Zbl
Cité par Sources :

