@incollection{JEDP_1996____A14_0, author = {Ziqi Sun and Gunther Uhlmann}, title = {Electrical impedance tomography in nonlinear media}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {14}, pages = {1--11}, publisher = {\'Ecole polytechnique}, year = {1996}, zbl = {0948.35512}, mrnumber = {97m:35281}, language = {en}, url = {https://proceedings.centre-mersenne.org/item/JEDP_1996____A14_0/} }
TY - JOUR AU - Ziqi Sun AU - Gunther Uhlmann TI - Electrical impedance tomography in nonlinear media JO - Journées équations aux dérivées partielles PY - 1996 SP - 1 EP - 11 PB - École polytechnique UR - https://proceedings.centre-mersenne.org/item/JEDP_1996____A14_0/ LA - en ID - JEDP_1996____A14_0 ER -
Ziqi Sun; Gunther Uhlmann. Electrical impedance tomography in nonlinear media. Journées équations aux dérivées partielles (1996), article no. 14, 11 p. https://proceedings.centre-mersenne.org/item/JEDP_1996____A14_0/
[A] Ahlfors, L., Quasiconformal Mappings, Van Nostrand, 1966. | MR | Zbl
[Al] Alessandrini, G., Singular solutions of elliptic equations and the determination of conductivity by boundary measurements, J. Diff. Equations, 84, (1990), 252-272. | MR | Zbl
[G-T] Gilbarg, D. and Trudinger, N., Elliptic partial differential equations of second order, Springer-Verlag, 1982.
[K-V] Kohn, R. and Vogelius, M., Determining conductivity by boundary measurements, Comm. Pure Appl. Math., 37, (1984), 643-667. | MR | Zbl
[L] Lax, P., A Stability theorem for solutions of abstract differential equations, and its application to the study of local behavior of solutions of elliptic equations, Comm. Pure Appl. Math., 9 (1956), 747-766. | MR | Zbl
[L-U] Lee, J. and Uhlmann, G., Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math., 42, (1989), 1097-1112. | MR | Zbl
[N] Nachman, A., Global uniqueness for a two-dimensional inverse boundary value problem, to appear Annals of Math. | Zbl
[No] Novikov, R.G., ∂-method with nonzero background potential. Application to inverse scattering for the two-dimensional acoustic equation, preprint.
[S] Sylvester, J., An anisotropic inverse boundary value problem, Comm. Pure Appl. Math., 43, (1990), 201-232. | MR | Zbl
[S-U, I] Sylvester, J. and Uhlmann, G., A global uniqueness theorem for an inverse boundary value problem, Annals of Math., 125, (1987), 153-169. | MR | Zbl
[S-U, II] Sylvester, J. and Uhlmann, G., A uniqueness theorem for an inverse boundary value problem in electrical prospection, Comm. Pure Appl. Math., 39, (1986), 91-112. | MR | Zbl
[S-U, III] Sylvester, J. and Uhlmann, G., Inverse problems in anisotropic media, Contemp. Math., 122, (1991), 105-117. | MR | Zbl
[Su] Sun, Z., On a quasilinear inverse boundary value problem, to appear in Math. Z. | Zbl
[Su-U, I] Sun, Z. and Uhlmann, G., Inverse problems in quasilinear anisotro pic media, preprint. | Zbl
[Su-U, II] Sun, Z. and Uhlmann, G., Generic uniqueness for an inverse boundary value problem, Duke Math. J., 62, (1991), 131-155. | MR | Zbl
[Su-U, III] Sun, Z. and Uhlmann, G., Recovery of singularities for formally determined inverse problems, Comm. Math. Phys. 153, (1993), 431-445. | MR | Zbl
[U] Uhlmann, G., Inverse boundary value problems, Astérique, 207, (1992), 153-211. | MR | Zbl