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1. Introduction

This is a report on the paper [Su- U I] concerning an inverse boundary value problem
for anisotropic quasilinear materials. We describe in this section the problem and the main
results of [Su- U I], In the remaining sections we outline the proof of the main results

Let Q C R71, n > 2, be a bounded domain with C2^ boundary, 0 < a < 1. Let
7(.r,t) = {^ij(x^t))nxn € C150^ x R) be a symmetric, positive definite matrix function
satisfying

(1.1) 7(^,<) ^CTI, Or, t )enx [-r,r],r>o,

where CT > 0 and I denotes the identity matrix.
It is well known (see e.g. [G-T]) that, given / G C^250^), there exists a unique solution

of the boundary value problem

{ V-7(a*,u)V^=0 in 0
(1.2) .v / u = f.

<9Q

We define the Dirichlet to Neumann map (DN) A^ : C2^^) -> C150^^) as the map
given by

(1.3) A^:/^.7Cr,/)Vu ,
a\t

where u is the solution of (1.2) and v denotes the unit outer normal of Q^l.

* Partly supported by NSF Grant DMS-9501401
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Physically, -y(x, u) represents the (anisotropic) conductivity of ̂  and A^(/) the current
flux at the boundary induced by the voltage /.

We study the inverse boundary value problem associated to (1.2): how much infor-
mation about the coefficient matrix 7 can be obtained from knowledge of the DN map
A,?

In the isotropic case, that is, ^(x,t) = a{x,t)I where I denotes the identity matrix
and 7 is a positive function having a uniform positive lower bound on H x [-T, T] for
each T > 0, the above question is well-understood: the Dirichlet to Neumann map A^ for
7 = oil determines uniquely the scalar coefficient a(x,t) on Q x R. This uniqueness result
was proven in [S-U, I] (n > 3), in [N] (n = 2) for the linear case (i.e. ^{x, t) = 7(3;)) and in
[Su] for the quasilinear case. We refer the readers to the survey paper [U] for other related
results.

The uniqueness, however, is false in the case where 7 is a general matrix function: if
$ : 0 —> Q is a smooth diffeomorphism which is the identity map on 90., and if we define

(1.4) (^)(,,t)=(??(^^M)^-,(,)

then it follows that (see Proposition (2.1))

A<^ = A-y,

where Z)$ denotes the Jacobian matrix of $ and |P$| = det(P$).
The main results of [Su -U I] concern with the converse statement. We have

Theorem 1.1. Let fl C R2 be a bounded domain with C3^ boundary, 0 < a < 1. Let

71 and 72 be quasilinear coefficient matrices in C2^^ x R) such that A^ = A^. Then

there exists a C3^ diffeomorphism $ : ̂  -^ Q with $ = identity, such that 72 = $*7i.
9fl

Theorem 1.2. Let 0 C R72, n ^ 3, be a bounded simply connected domain with real-

analytic boundary. Let 71 and 72 be real-analytic quasilinear coefficient matrices such that

A-y^ == A^. Assume that either 71 or 72 extends to a real-analytic quasilinear coefficient

matrix on R71. Then there exists a real-analytic diffeomorphism $ : ̂  —> 0 with $

identity, such that 72 == $*7i.
ao

Theorems 1.1 and 1.2 generalize all known results for the linear case ([S-U III]). In
this case and n = 2, with a slightly different regularity assumption. Theorem 1.1 follows
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using a reduction theorem of Sylvester [S] and the uniqueness theorem of Nachman [N] for
the isotropic case.

In the linear case and n > 3, Theorem 1.2 is a consequence of the work of Lee and
Uhlmann [L-U], in which they discussed the same problem on real-analytic Riemannian
manifolds. The assumption that one of the coefficient matrices can be extended to R71

can be replaced by a convexity assumption on the Riemannian metrics associated to the
coefficient matrices. Thus Theorem 1.2 can also be stated under this assumption, which
we omit here.

2. Invariance under the group of diffeomorphisms

Let ^ C R71 be a bounded domain with 9^1 in the C^^ class, where m 6 Z4-, a € [0,1).
We denote by ©m,a the group of diffeomorphisms given by

Grn a = {all C^ diffeomorphism $ : Ti -> H with $ == identity}.
<9^

In the case that 9^1 is in the real-analytic class, (7^, we define

©^ == {all C^ diffeomorphisms $ : ^7 —^ f^ with $ = identity}.
9^1

Let $ be a diffeomorphism in one of the groups given above. As indicated in the
introduction, the transformation $* : 7 —> $^7 preserves the Dirichlet to Neumann map
in both linear and quasilinear cases. We give a proof below in the quasilinear case.

Proposition 2.1. Let 7(3;, t) be a positive definite symmetric matrix in the C150^) class,

0 < a < 1, satisfying ( 1 . 1 ) and $ C ©2,0. Then

(2.1) A$^ = A^.

Proof. Let ^ 6 C00^) be a test function. We write the equation (1.2) in the weak form:

(2.2) / V^ • ^{x,u)^udx == / g^{f)dS
JQ JQ^I

where q = ib . Let us define
' BQ

(2.3) u=no$~ 1 , ^== '0o$ '
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and make the change of variables x —> $(a;) in (2.2). It is easy to verify that

(2.4) / V^-<^7(,r,u)(Vu)cte = / \7^'^(x,u)(^u)dx.
J^i Jfl

By choosing in (2.4) ^ 6 C§°(fl)^ we have that u is the unique solution to

(2.5)
V '^^(x,u)Vu=0 in ̂

u ==/
, <9Q

Now, we write (2.5) in the weak sense. By using that $ == identity we have
ao

/ V^'^^(x,u)Vudx = / g^^(f)dS.
Jfl Ja^i

Now comparing this formula with (2.2) and (2.4) we get

/ g^(f)dS = I gA^(f)dS, V g € C°°(9^f € C^{9^1\
Ja^i Ja^

from which (2.1) follows. •

3. First linearization and its consequences
In this section we shall linearize the quasilinear Dirichlet to Neumann map A^ to

obtain information about the coefficient matrix 7 by using the linear results.
Let ' j ( x^ t ) be a positive definite, symmetric matrix in the C2 class satisfying (1.1)

and 9^1 in the C2^ class. Fix t € R and / € C^^Q). Consider the function

(3.1) s-^ A^t+sf),

By the definition of A^, (3.1) is a function from R to C150^^).
It has been shown [Su] that the function (3.1) is twice differentiable in the weak sense.

It turns out the first two derivatives of (2.1) at s = 0 yield important information about

7-
In this section we consider the first derivative. In section 4 we shall make use of the

second derivative of (3.1) We shall use 7< to denote the function of x obtained by freezing
t in j(x^t).
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Proposition 3.1. [Su]. Let -j(x,t) be a quasilinear coefficient matrix in C2^ x R). Then
for every f € C2'"^) and t <E R

HmJ|^+^-A^a)|^^=0.

Under the assumptions of Theorem 1,1., using Proposition 3.1. we have that

(3.2) A^ = A ^ , V * e R .

Since Theorems 1.1 and 1.2 hold in the linear case, it follows that, there exists a diffeo-
morphism $*, which is in ©3^ when n == 2 and is in ©^ when n > 3, and the identity at
the boundary such that

(3.3) ^ = ̂

It is proven in [Su- U I] that $* is uniquely determined by 7^, and thus by 7^, ^ = 1 , 2 .
We then obtain a function

(3.4) <S>[x, t} = ̂ \x) : Q x R -^ n x R,

which is in C350^) for each fixed * in dimension two and real analytic in dimension n ^ 3.
It is also shown in [Su -U I] that $ is also smooth in t. More precisely we have, in every
dimension n > 2, that ̂  € C2^^).

In order to prove Theorems 1.1 and 1.2, we must then show that ̂  is independent of
t. Without loss of generality, we shall only prove

9$ —
(3.5) — =0 in 0

Ot . r ,t=0

It is easy to show, using the invariance (1.4) that we may assume that

(3.6) $(^,0) = .r.that is, $° = identity.

Let us fix a solution u G C3'0'^) of

(3.7) V - A V ^ = 0 , u\a^=f

where we denote A = 7^ = 7^.
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For every t <= R and / = 1,2, we solve the boundary value problem (3.4) with 7*
replaced by 7^. We obtain a solution u*.:

(3.8)
V • 7?Vn^ =0 in ̂

1=1,2.
=f(I)u

an

It follows from the proof of Proposition (2.1) (see also (2.3)) that

";i)(^) = ̂ (^(a-)), x € n.
Differentiating this last formula in < and evaluating at t = 0 we obtain

(3.9)

where

(3.10)

'^W Qu^)
Qt 9t - x • Vn = o, x e ̂ ,

(=0

x= 5$<
^ (=0

It is easy to show that X • VK = 0 for every solution of (3.7) implies X = 0. so we are
reduced to prove

(3.11)
<5u?ix 9u1

"(i) (2)

9t 9t =0.
t=0

^From (3.8) we get

(3-12) V • (7i(.M)Vu;^) - V • (72(a-,()Vn;2)) = 0.

Differentiating (3.12) in t at t == 0 we conclude

'<?7i 572 9^(1) 9^(2)
9t 9t

Vu\ + V • AV(3.13) V.
9t 9t t=0 t=OJ

=0.

We claim that to prove (3.11) it is enough to show that

"<?7i <?72 Vu =0.(3.14) V.
9t 9t <=o
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This is the case since we get from (3.13) and (3.14)

Qu^^ Qu^" ( i ) (2)V - AV =0.
819t

<=oJ

The claim now follows since the operator V • AV : H2^) C1 H1^) —>• L2^) is an isomor-
phism and

9u^ Qu^

9t 9t (=ol9n
0.

4. Second linearization and products of solutions
In order to show (3.14) we now study the second derivative of (3.1). We introduce,

for every t 6 R, the map J<-^ : C'2'0'^^) —> H^(9fl,) which is defined implicitly as follows
(see [Su]): for every pair /i,.^) <E C2'a9^ x C2'0^),

/ fiKA,tWds= /Vu^V^da-
JQH, Jfl ot

(4.1)
J9SI Ja

with U(, I = 1,2, as in (3.8). with / replaced by /;, I = 1,2. We have

Proposition 4.1. [Suj. Let 7(3", t) be a positive definite symmetric matrix in C2^ x R),
satisfying- (1.1). Then for every f € C'2'0'̂ ) and t C R,

i"s|^ [^(t+,/)-A,,(/)] - ,̂.(/)||̂ ^ =0.

Under the assumptions of Theorems 1.1 and 1.2, using Proposition 4.1 with * = 0, we
obtain

A^,o(/)=^,o(A v/ec^°(<^).
Thus, by (4.1) we have

(4.2) / V«i £h- ^dx = fVnjda; = / Vui —2 Vnjda-,
1=0 Jft dt t=oJSl ot t=0 Jsi

with ui,i<2 solutions of (3.8) By writing

(4.3) B= ' Q^i\ __ 9^2
. 9t 9t t=0

and replacing in (4.2) u^ by u and uj by (ui + U2)2 — u2 — ^ji we obtain

(4.4) / Vu • B{x)^{uiu-t)dx = 0
Jn

with H, ui and U2 solutions of (3.8).
To continue from (4.4), we need the following two lemmas.

XIV-7



Lemma 4.1. Let h{x) e C1^) be a vector-valued function. If

I h{x}V(u^}dx = 0
Jfl

for arbitrary solutions ui and u^ of (3.8), then h{x} lies in the tangent space Tr(<9Q) for
all x 6 c^2.

Lemma 4.2. Let A(x) be a positive definite, symmetric matrix in C2'0'^). Define

DA = Span^2(^){iw;^ 6 C^OT^V-AV^ = V • AVv =0}.

Then the following are valid:

(a) If I e (7^(0) and I-LDA, then I = 0 in 0

fb) Ifn=2, then DA = ̂ (0).

Now we finish the proof of (3.14) concluding the proofs of Theorems 1.1 and 1.2.
By Lemma 4.1 we have that v • B{x}^u = 0 in 9^1. Integrating by parts in (4.4) we

obtain

(4.5) / [V • B{x)Vu}u^dx = 0.
Jfl

We now apply Lemma 4.2 to (4.5). If n >_ 3, we have that 71 and 72 are real-analytic
on Q x R. Thus B G C^^l}. Since the solutions u solves an elliptic equation with a
real-analytic coefficient matrix, we have that u is analytic in ^2. If u is analytic on Q, we
can conclude from Lemma 4.2 that

(4.6) V • (B(a-)Vu) =0, x € n.

We shall prove that (4.6) holds independent of whether u is analytic up to 9^i or not.
This is due to the Runge approximation property of the equation (3.7) [L]. Using the
assumptions of Theorem 1.2 we extend A analytically to a slightly larger domain fl D fl.
For any solution u € C350'^) and an open subset 0 with 0 C ̂  we can find a sequence
of solutions {um} C (7^(0), which solves (4.4) on ^, and Um —> u in the L2

_ _ Oi m—^oo Oi

sense, where 0\ C 0, 0 C 0\. By the local regularity theorem of elliptic equations this
convergence is valid in ^(O). Since (4.6) holds with u = Um^ letting m —>• oo yields
the desired result for u on 0. Thus (4.6) holds. If n = 2, Lemma 4.2 (b) implies that
V • (5(,r)Vn) = 0 for any solution u e C3^^).
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The proof of Lemma 4.1 follows an argument of Alessandrini [Al], which relies on the
use of solutions with isolated singularities. It turns out that in our case, only solutions
with Green^s function type singularities are sufficient in the case n > 3, while in case n =- 2
solutions with singularities of higher order must be used. There are additional difficulties
since we are dealing with a vector function h. We refer the readers to [Su-U I] for details.

The proof of part (a) of Lemma 4.2 follows the proof of Theorem 1.3 in [Al] (which
also follows the arguments of [K-V]). Namely, one constructs solutions u of (3.7) in a
neighborhood of Q with an isolated singularity of arbitrary given order at a point outside
of 0. We then plug this solution into the identity

/ Iv^dx = 0.
J^i

By letting the singularity of u approach to a point x in 90, one can show that any derivative
of h must vanish on x and thus by the analyticity of /, I = 0 in 0. We leave the details to
the reader.

To prove the part (b) of Lemma 4.2, we first reduce the problem to the Schrodinger
equation.

Using isothermal coordinates (see [A]), there is a conformal diffeomorphism F :— —f
(n,^) —^ (Q ,e), where g is the Riemannian metric determined by the linear coefficient
matrix A with g,j = A^.1. One checks that F transforms the operator V • AV (on ^2) to an
operator V • A'V (on ^') with A' a scalar matrix function / 3 ( x ) I . Therefore the proof of
the part (b) is reduced to the case where A = /3J, with f3(x) C C2'0'^). By approximating
by smooth solutions, we see that the C3^ smoothness can be replaced by H2 smoothness.
Thus we have reduced the problem to showing that

Dfs = Spsin^{uv',u,v eH2^)^ . f3^u=^7 ' /3Vv=0} = L2^).

We make one more reduction by transforming the equation V • /?Vu = 0 to the
Schrodinger equation

Az; — qv == 0

with

(4.7) u = /3-^v,q = Av^ e C0^).
vP
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This allows us to reduce the proof to showing that

(4.8) Dq =Span^{z^2;^ € H2^},^ - qv, = 0 , ? = 1,2} = ^(Q)

for potentials q of the form (4.7)
Statement (4.8) was proven by Novikov ([No].) In [Su-U I] it was shown that it is

enough to use the Proposition below which is valid for any potential q e jD00^). This
result uses some of the techniques of [Su -U II,III]

Proposition 4.2. Let q C jL00^),^ = 2. Then Dq has a finite codimension in L2^).

It is an interesting open question whether Dq = ^(Q) in the two dimensional case.
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