@incollection{JEDP_1995____A18_0, author = {Elliott H. Lieb and Michael Loss}, title = {Symmetry of the {Ginzburg-Landau} minimizer in a disc}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {18}, pages = {1--12}, publisher = {\'Ecole polytechnique}, year = {1995}, zbl = {0871.35041}, mrnumber = {96i:35123}, language = {en}, url = {https://proceedings.centre-mersenne.org/item/JEDP_1995____A18_0/} }
TY - JOUR AU - Elliott H. Lieb AU - Michael Loss TI - Symmetry of the Ginzburg-Landau minimizer in a disc JO - Journées équations aux dérivées partielles PY - 1995 SP - 1 EP - 12 PB - École polytechnique UR - https://proceedings.centre-mersenne.org/item/JEDP_1995____A18_0/ LA - en ID - JEDP_1995____A18_0 ER -
Elliott H. Lieb; Michael Loss. Symmetry of the Ginzburg-Landau minimizer in a disc. Journées équations aux dérivées partielles (1995), article no. 18, 12 p. https://proceedings.centre-mersenne.org/item/JEDP_1995____A18_0/
[AL] F.J. Almgren, Jr. and E.H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc. 2, 683-773 (1989). | MR | Zbl
[BBH] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Birkhäuser 1994. | MR | Zbl
[CG] G. Chiti, Rearrangements of functions and convergence in Orlicz spaces, Appl. Anal. 9, 23-27 (1979). | MR | Zbl
[CT] M.G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings, Proc. Amer. Math. Soc. 78, 358-390 (1980). | MR | Zbl
[HH] R.M. Hervé and M. Hervé, Etude qualitative des solutions réeles de l'équation differentielle ..., (to appear) | Numdam | Zbl
[JT] A. Jaffe and C. Taubes, Vortices and Monopoles, Birkhäuser (1980). | MR | Zbl
[LE1] E.H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math. 57, 93-105 (1977). | MR | Zbl
[LE2] E.H. Lieb, Remarks on the Skyrme Model, in Proceedings of the Amer. Math. Soc. Symposia in Pure Math. 54, part 2, 379-384 (1993). (Proceedings of Summer Research Institute on Differential Geometry at UCLA, July 8-28, 1990.) | MR | Zbl
[LL] E.H. Lieb and M. Loss, Symmetry of the Ginzburg-Landau Minimizer in a Disc, Mathematical Research Letters 1, 701-715 (1994). | MR | Zbl
[MP] P. Mironescu, On the stability of radial solutions of the Ginzburg-Landau equation, submitted to J. Funct. Anal. (1994).