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ABSTRACT:
The Ginzburg-Landau energy minimization problem for a vector field on a two di-

mensional disc is analyzed. This is the simplest nontrivial example of a vector field mini-
mization problem and the goal is to show that the energy minimizer has the full geometric
symmetry of the problem. The standard methods that are useful for similar problems
involving real valued functions cannot be applied to this situation. Our main result is that
the minimizer in the class of symmetric fields is stable, i.e., the eigenvalues of the second
variation operator are all nonnegative.

I. INTRODUCTION
There are many energy minimization problems having a geometric symmetry and for

which one can show that the energy minimizer has the same symmetry as the problem
itself. Typically this is done by using a rearrangement inequality of some sort. However,
and this is the important point, rearrangement inequalities work (if they work at all) only
when the variable is a function and not something more complicated like a vector field.

There are several important problems in which the variable is one or more vector or
tensor fields and for which the minimizer is believed to be symmetric. Examples include
the full multi-field Ginzburg-Landau problem for a superconductor in a magnetic field, the
?! Hooft-Polyakov monopole and the Skyrme model (see [LE2] for a review). They are all
unresolved. In this paper we analyze the simplest possible nontrivial example of a vector
field energy minimization problem—the Ginzburg-Landau problem for a complex scalar
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field in a disc. It has exercised many authors (see, e.g., [JT], [BBH] and references therein)
but no one has been able to show that the obvious symmetric vector field minimizes the
energy (except in the weak coupling regime where convexity holds). In fact, it has been
shown only very recently, [MP], [LL], that the symmetric solution is stable under perturba-
tions. In [LL] we used a mixture of rearrangement inequalities on different components of
the vector field and, while our methods are highly specialized to this problem, we believe
that it is one of the few examples in which light can be shed on the symmetry of an energy
minimizing vector field.

For the Ginzburg-Landau problem in the unit disc D = B2 in R2, the variable is
a real vector field ^(x) == (f(x\g(x)). It is customary to introduce the complex valued
function (f)(x) = f{x) + ig{x). The energy functional is

£^)= /{(V/(^)2+(V^))2+J(/(^2+^)2)}d.r= ^{[V^p+Jd^l2)} . (1.1)
JD ^D

Usually, J : R4- -> R4" is taken to be the function J(t) = A(l - t)2 with A > 0. For
our purposes we can generalize this to J satisfying certain conditions, which we assume
henceforth:

(i) J(0) = A > 0, J(l) = 0, J(<) > 0 if * > 1,
(ii) J ( t ) is monotone decreasing and convex on the interval [0,1],

(iii) J is twice differentiable on [0,1].
The gradients of ^ are assumed to be square integrable and the condition on ^ on the

boundary of D is
-0(a;) = x = (^1,^2) = (cos (?, sin 0). (1.2)

We denote the class of ^(D) functions satisfying (1.2) by C. The problem is to minimize
£{^) subject to '0 G C.

For this problem it is a standard fact that a minimizer exists and satisfies the Euler-
Lagrange pair of equations

-^+Jf^2^=0 (1.3)

with ^2 = f2 +g2. The obvious conjecture about a minimizer ^ is that it is a '^hedgehog57,
i.e., for some nonnegative function / defined on [0,1] with /(I) = 1

^x) =/(r)(cos^,sin0) (1.4)

where r := -v/ ' x\ + x\. There is always a function ^o that minimizes the energy in the class
of vector fields of type (1.4), and it satisfies (1.3). The problem is to show that this ^o is
a global minimizer. In terms of /(r), (1.3) reads

-ffl-l-ft+Lf+J\f2)f=0 (1-5)r r2
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with /(O) = 0 and /(I) = 1. The solution to this problem is unique [HH]. It is not hard
to see that / is monotone increasing, but this fact is not needed.

Although we cannot prove the full hedgehog conjecture, we are able to verify that
the hedgehog is stable, that is to say that all the eigenvalues of the self-adjoint second
variation operator H, defined by the quadratic form,

d2
12^£^+ev} _-{v.Hv\ (1.6)

V-LC- £— 0

are nonnegative. Specifically H is given by

Hv = -A^ + J ' ^ v + 2J"(^)^o^)^o (1.7)

for vector fields v that vanish on 3D. Here (a, b) is the inner product on R2.
Independently, Mironescu [MP] proved that the eigenvalues of H are not only non-

negative but strictly positive in fact. His beautiful analysis is completely different from
ours and proceeds by an ingenious comparison of the Euler-Lagrange equation (1.5) with
the second variation operator (1.7).

II. STATEMENTS OF THEOREMS AND LEMMAS
The following three theorems will be proved in the next section in the order 2, 3, 1.

Theorem 1 is our main result. Theorem 3 will require three lemmas which we list here.
Lemmas 1 and 2 on rearrangements are well known.

The proof of Theorem 2 uses some simple facts about convexity. This theorem holds
for the analogous Ginzburg-Landau problem in the ball B71 C R71 for any n, not just for
n = 2. Theorem 1 is a Corollary of Theorems 2 and 3.

THEOREM 1 (Weak stability of the symmetric minimizer). The eigenvalues
of H in (1.8, 1.9) (with Dirichlet boundary conditions) are all nonnegative. The complex
eigenf unctions of H can all be chosen to have the following form

^»)-^( "We-'+We-" \
v ? / ~ \-za(r)e^ + i6(r)e-^)' ^A)

for suitable real functions a = dm (md b = bm and with m = 0,±1,±2,.... Clearly, v,
the complex conjugate, is also an eigenvector with the same eigenvalue as v. The lowest
eigenvalue of H belongs either to m = 0 or to m = ±1.

THEOREM 2 (Partial convexity of the energy functional ^(^)). Suppose
-0 = ( '0i,.. . ?'0n) is a real vector field in H1^71') that satisfies ^(x) = x on the boundary

n
o/B71. Suppose that |^(a;)|2 = ̂  ̂ i(x)2 < 1 for all x and suppose that each component

i=i
^i satisfies

\ ^(r^)do? = 0 (2.2)
Js71-1
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for all r <_ 1. Define the vector field ^{x) by

^(r^) = /i(r)a;, ^ 6 S71-1 (2.3)

where h is the spherical average of |^|2, i.e.,

r i1/"2

W- ^/^(IX"-)2)^ (2.4)

a?zc? [S71"1! = Jgn-i do;. r^en (^w^/i <?(^) given by the obvious generalization to Byi of
( 1 ' 3 ) ) ,

W ^ W (2.5)

If we assume that h(r) > 0 for all r > 0 then equality occurs in (2.5) only if ̂  = ̂ .
THEOREM 3 (Rearrangements of special vector fields). Suppose that ^ is a

vector field in C and suppose that there exists some fixed vector (^Q G S1 and some function
z : [ — 1 , 1 ] —> R such that

^(^o)=^)^o (2.6)

for all t G [ — 1 ? 1]- Then there is a vector field ^ G C satisfying (2.6) and, additionally,
(i) ^{x) = -!{-x) for all x € D, (2.7)

(zz) £W < £W (2.8)
(in) \^(x)\2 < 1 for all x G D. (2.9)

Remark: The following might help to clarify the relation between Theorems 2 and 3.
Write a minimizing ^ G C in complex form as

00

<^)= ^ Cfc(r)e^, (2.10)
A; ==—oo

with c^(l) = 0 if k ^ 1 and ci(l) = 1. If co(r) = 0 then Theorem 2 applies and we learn
that the hedgehog is the minimizer, i.e., c^(r) = 0 for k ^ 1.

Next suppose that we take a (f) in the form (2.9) in which only at most two of the c^s
are not identically zero, say c\ and Cm with m ^ 1. Then we claim that we can choose
the two c^s to be real functions without raising the energy. Having done this, Theorems
2 and 3 apply and we again learn that the energy minimizing choice in this restricted
category has Cm = 0 for m -^ 1. The proof of this assertion is the following. We write
Cj(r) = pj(r) exp^Oj^r)] with pj ^ 0 and aj real. Then

|^(r, 0)\2 = pi(r)2 + p^(r)2 + 2pi(r)p^(r) cos[(m - 1)0 + a^(r) - ai(r)],

and we observe two things: If we replace ai and 0m by zero

XVI 1 1 . 4



then (i) the gradient term in £ can only decrease; (ii) the J term does not change
because by a trivial shift of (?, the 0 integral does not depend on a^(r) — ai(r). (The
convexity of J plays no role here.)

The lemmas about symmetric decreasing rearrangements that we shall need are the
following. The first was basically proved by Chiti [CG] and then by Crandall-Tartar [CT].
For some generalizations see [AL], 2.2 and 2.3.

Lemma 1. Let f and g be nonnegative functions on R/1 and let J : R —> R4" be a
convex function with <7(0) = 0. Then

I J{r(x)-g^x))dx< ! J{f{x) - g(x))dx (2.11)
JR" JR"

where /* and g* are the symmetric decreasing rearrangements of f and g.
Lemma 2 (Rearrangements and gradient norms). For u e H^[-a,d[) define

u* = |u[*. Then u* 6 H^([—a^a\) and

2 /» / j. \ 2

<
r /du*v r ^duY

j (ar) ̂  (d^) • <2-12)

Lemma 3 (Cutting argument). Let ^ = (f,g) G C and assume in addition that
^(a:i,0) = 0 for x^ G [-1,1]. Then there exists ̂  == (/^ € C ^-^c/i that for all x = (^1,^2)
in D
(̂  ^(^1,^2) ^ ^2 /^^ ^ 2 ^ 0 anrf ^(^1,^2) < ^2 for x^ <. 0,
(ii) \^{x)\ <^ 1 for all x G D one? hence f{x-^^x^)2 < 1 — .rj^

(zzz) £W < £(^

III. PROOFS
n

3A. Proof of Theorem 2: Since ^ ^i(^)2 < 1, and since t \-> J ( t ) is convex we
1=1

have, by Jensen^s inequality, that

———— / J(|^(^)|2)d^ > J(^(r)2) (3A.1)
I3 I Js"-1

and hence
/ J^x^dx > f Wr^dx = f JWx)\^dx. (3A.2)

^Bn JBn JBn

To estimate the kinetic energy we expand each component, ̂ , into normalized spherical
harmonics, V/yn? with coefficients (^(r).

00

^•(^-EE^w"^)- (3A-3)
/=! m
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Here / denotes the irreducible representation of S0(n), while m is a multi-index that labels
the rows. The reason / = 0 is absent is that f^_, ̂ (r^)du = 0 for every 0 < r ^ 1. Note

that h{r)2 = E E E^W/IS"-1!. It is well known that
j=l l==l m

/ IV^F^^y'^d^/^+'C^2!^).}^-.^ (3A.4)
"" (=1 m VQ ^ ' ' J

Since ̂  = E E E (^.md^) /[S"-1) we get, by Schwarz's inequality, that
3=1 1=1 m \ / I

i 7 2 n oo / i lm\ i2 n °° /^Jm\2
dh . \-^ v^ y^ / dc1^ \ /
d7 ^EEE -̂ - /IS-I. (3A.5)

7=1 /=! m \ / /

Obviously,

00 /-i oo i

E E / ^ + n - SXc?")2^-^ ^ E E / (n - l)(^•m)2^-3dr (3A.6)
<=1 m ^O ,^1 ^ JO

with equality only if c^" == 0 for all / ^ 2. In that case we can write

W-Vrif^d^r)^ (3A.7)
A=I r

and /i(r)2 = E^fc=i c^^r)2• In g^^ali by summing over j, we find that

/ IV^I^IS"-1!/"{(d^/d^+^^^r^dr^ / |V^2, (3A.8)
•/B" •/() r JB^

with equality only if (3A.7) is satisfied.
In short, (2.5) has been proved and we know that equality requires (3A.7). Our final

task is to show that equality in (2.5) also requires <^(r) = h{r}8k,j/^/n when h(r) > 0 for
all r > 0.

Inequality (3A.5) was obtained by using Schwarz's inequality. In order to have equality
we must have that

^(r) = A(r)^(r) (3A.9)

for some function A(r) not depending on j and k. By multiplying (3A.9) on both sides by
o^(r-) and summing over k and j we have h(r)h'(r) = \(r)h(r)2. Since h{r) > 0 for all
r > 0 we have that

A(r) = h'(r)/h(r). (3A.10)
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This function is integrable away from the origin and hence (3A.9) yields

^(r)=^(r)^(l). (3A.11)

with ^(r) = exp^-J^A(.s)d.sj-. By assumption, however, ^(1) = n-1/2^, and this
yields the desired conclusion with ^(r) = /i(r). •

3B. Proof of Theorem 3: Without loss of generality, we can assume cc^o = (1,0).
Our hypothesis is that if ^{x) = {f{x},g{x}) then 5^1,0) = 0 for -1 < x^ < 1. By
Lemma 3 (cutting argument) we can also assume two important facts about our / and g:
(i). f{x^,x^2 < \-x\ and (ii). 5^1,^2) >. x^ if x^ > 0 and 5^1,^2) < x^ if x^ < 0. We
can also assume that f2 + g2 <^ 1.

The first step is to define ^ in the following way. For each, fixed x^ we replace the
function x^ \—^ 9(^1^2) by its (one-dimensional) symmetric decreasing rearrangement
^(^1^2) if ^2 > 0 and we replace it by -^(a-i,^)!* it ^2 ^ 0. By (ii) above, g satisfies
the correct boundary condition, (i.e., ^(a-i, ^2) == x^ on 3D), and <? also satisfies (ii) above.

The next step, the definition of /(.TI,^), is a bit more complicated. First, let /# be
the symmetric increasing rearrangement of |/|. [Another way to say this is that 1 — /# =
(1 - |/|)*]. Once again, the rearrangement is done on each line x^ == constant. We note
that f{x^,x'z\is continuous in x^ for a.e. x^ (because it is an ^(R) function for a.e. ^2)
and has antisymmetric boundary values at x^ = ±(1-^|)1/2. Therefore /# is a continuous
function of x\ (indeed, it is an ^(R) function by Lemma 2) and /^(O,^) = 0. By (i)
above, /# <, (1 - .rj)1/2. Moreover, f# = (1 - :r|)1/2 on 9D since .2:1 ^ \f(x^x^\ is
continuous and [/[ satisfies the same boundary condition. Now define

7(^2) ={ ̂ ^ ifxl>o (3B.1)
I -J"(^1^2) l f ^ l < 0 v /

which satisfies the correct conditions on <9D. We also note that \9f/9x-t \ = l^^/c^i | and
\9f/9x,\=\9f#/9x,\.

Our task is to show that these rearrangements decrease both terms in the functional
£. We turn to the gradient norms first. By Lemma 2 we have that f^{9^g/9x^2 does not
increase and the same is true for f^(9f/9x^2. We next show that f^{9'g/9x'z)2 does not
increase either. (The argument for / is essentially identical.) There are several ways to
prove this, and one way is the following. An easy approximation argument shows that

/ {Qg/Qx^2 = lim <T2 / [g(x^X2 +8)- g^x^x^dx.dx^ (3B.2)
JD 6^0 JD

(Here, g{x\, ^2) has to be extended to be x^ outside D.) The result we want—that replace-
ment of g by 7j does not increase the two sides of (3B.2)—follows from a trivial modification
of Lemma 1.
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To summarize, the vector field ^ is in C and its gradient norms are not bigger than
those of ^.

The next step is to prove that |^(a;)|2 <, 1 for all x e D. Let K(t) = [max(0,^)j2.
Then

f ^(^-(l-/2))^ (35.3)

since |^|2 = f2 + g2 ^ 1. By Lemma 1, however,

^ A'(<72 - (1 - /2)) > y A-(^ - (1 - 72)) (3B.4)

since (gr2)* =^<72 for each line, x-z = constant, and, similarly, (1 - f2)* = (1 - f2) since
jf2 ^ 1 and f2 ^ 1. If <72 + /2 > 1 on a set of positive measure the right side of (3B.4)
would be positive, but this is precluded by (3B.3).

We now consider the J term in E. We can define L{t) = J(l - t) for 0 <, t <, 1. (The
definition of L(t) for * < 0 or t> 1 is not needed since 0 <: t <_ 1 in our application.) Then,
by Lemma 1 and the same reasoning as for K above,

[ W-f^-g2)^ I ^(l-/2)-^2),
J~D JD

which is the same as JJ(H2) ^ f J(H2).
Thus far we have constructed a ^ with £{^) ^ ^(^), with |^(;c)| < 1 and with

/Oi,a-2) = ^/(-•ci,a'2) and ^(.r-i,^) = ^(-a-i,^). The final step is to use this f to
construct a ^ satisfying ^(x) = -^(-a;) and £(^) ^ £^). Let D+ denote the upper
hemidisc {(a-i,^) : x-i ^ 0} D D and D- the lower hemidisc. Let (/±,<7±) denote f
restricted to D+ and D-. Consider the following two vector fields.

, /(J+C1'!^),^;!'!,;^)) in D+
I (/+(a'i,-a'2),-5''+(a-i,-a;2)) in D-

^^ !(f-{xi,-X2),-g-(xi,-x^ inD+
l(/-(;ri,;r2),(7-(a;i,a-2)) in D_

^

Clearly t/)i,2(a") = -^i,2(-a;) and [^(a-)! < 1. Also, ^i and ^2 are in C because g{ x i ,0) =
0. Moreover,

^l)+^2)=2^).

Therefore, ipi or ̂  is a vector field ^ satisfying the conclusion of Theorem 3. •
3C. Proof of Theorem 1: The basic fact, which we shall prove later, is that the real

eigenfunction of H can be chosen to have at least one of the following symmetry properties
for all x G D.

(a) v(x) = —v(—x)

(&) v(x) = Pv(P-1 x) (3C.1)
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where P = ^ j is the reflection about the .ri-axis in R2. This is not to say that

every eigenfunction has one of these properties, but we do assert that each eigenvalue of
H has at least one eigenfunction of type (a) or (b). Since we are interested only in the
eigenvalues of H^ we may assume (a) or (b).

Now consider ̂  := ^o + ev C C, with v as in (3C.1). In case (a), ^e(x) = -^(-a-)
for all e and thus the hypothesis (2.2) of Theorem 2 is satisfied. In case the other

condition, |^(.r)| < 1 is not satisfied we can replace ^e(^) by ^(rc) = ^(^)/|^(^)| on the
set where \^e{x)\ > 1. Clearly (2.2) still holds and it is easy to check that £(f^ <, <f(^).
By Theorem 2, there is a ̂  with £(^e) ̂  ^(^) and ̂  is a hedgehog (1.4). Thus,

W)>^)>W)) (3G.2)W)>^A)>W))
since ^?o is the energy minimizer among all hedgehogs.

In case (b), ̂  satisfies hypothesis (2.6) of Theorem 3, with c<;o == (1,0). We first have
to use Theorem 3 to obtain an intermediate ^ that satisfies the hypothesis of Theorem 2.
Again, (3C.2) holds. Since

^)=^o)+^7 / ^+o(62),
JD

where 7 is the eigenvalue of H belonging to v^ we see from (3C.2) that 7 > 0.
There are two ways to derive the symmetry (3C.1) and we shall give both. The first

is a fairly general argument and the second involves a detailed study of the eigenfunctions
leading to (2.1).

General argument: Let P denote reflection about some axis through the origin.
For any eigenfunction, w, its reflection, (P*w)(^) := Pw(P~1^), is also an eigenfunction
with the same eigenvalue. If v(x) = w{x) + (P*w)(a*) is not identically zero for some P
then v is an eigenfunction satisfying (3C.1) (b). If v vanishes identically for all reflections
P we claim that w must be of type (3C.l)(a). To see this recall that any rotation K is the
product of two reflections and hence Kw^K^x} = w(^), i.e., w is rotationally symmetric.
It is easy to see that w must then satisfy w(x) = k(r){-X2,x^ for some function fc, and
hence w satisfies (3C.l)(a).

Details of eigenfunctions: Let 7\^ be the rotation through the angle a and let Ua
be its representation given by

{Uc,v)(x) = n^v{n^x). (3C.3)

Ua is a strongly continuous one-parameter subgroup of the unitary group of ^(DsC2)
and it commutes with H. Its infinitesimal generator is

L = ' ^ + ' ( \ ;)• (3C-.4)
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By standard arguments we can choose the eigenfunctions of H to be eigenfunctions of
L. By solving Lv = vv we find that v(0} must be of the form (2.1). v must be an integer
since u(0) = u(27r). Furthermore, a glance at the eigenvalue equation reveals that a and b
can be taken to be real.

Next we verify that the lowest eigenvalue belongs to m = 0 or m = ±1. Suppose, on
the contrary, that the lowest one belongs to M > 1 (m and -m are the same by complex
conjugation). Then define a comparison function by ^ := e-^v. Obviously the J-term
is unchanged^ The only term that changes in the gradient norm is the replacement of
1 '•= JD ̂  r-2 ̂  I '-^ JD ^e-t<?u 2 r-2- One easily computes that

I = 2 / {(M + l)2^)2 + (M - l)2^)2^-2

</ \j

and hence J < I if M > 1.
Now consider (2.1) with m = 0. This vector v satisfies v(x) = -v(-x) (because

changing x to -x amounts to changing 0 to 0 + 7r). Thus, all m = 0 eigenfunctions satisfy
(3C.l)(a). Indeed all even-m eigenfunctions have this property.

When m = 1 we claim that (3C.l)(b) holds—thus completing our proof. We take the
real part of (2.1), which is v(r, 0) = (a(r) cos 20 + 6(r), a(r) sin 20); this satisfies (3C.l)(b)
with P being reflection about the a-i-axis. J

3D. Proof of Lemma 3: We shall construct ^ by a sequence of steps.

Stepl. ^T^=<f^ i f H < l
y ^ WH if H ^1

[with |^| = (/2 +fir2)1/2]. An easy exercise shows that IIVTi^^ < ||V^||2. Furthermore,
f J(.W2) ̂  JJ"(|7i^|2) because J ( t ) ̂  0 when t > 1 while J(l) = 0. Therefore, without
loss of generality we can assume that |i/»(a-)| < 1 for all x.

Step 2. ^r^=(/,/Q withal, x^ )^Imax{a-2,^i ,^)} if ^2 ^ 0
[mm{,r2,5'(a'i,a'2)} if a-2 ^ 0.

Obviously \W(x)\ ̂  |^(.r)[ for all x.
The condition $f(a-i,0) = 0 guarantees that T^ € C.

Step 3. -0i-^ Ts^ = TiTa^.
^^ ^^

If we write T^T^ = (/,^) = ^ we can easily verify the following for all x (using |^| ^ 1)

(G) 1 > \W{x)\ > |̂ )|

W \W\ ^ |A^I and sgn/(.r) = sgnf(a-)

(c) l^(a')l ^ KaQI and sgn (̂a;) = sgna-2

(d) W-^)2^1-^^-^)2^.
1 -(- .Z*^
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(a) is obvious because T^ does not decrease |^| and Ti only cuts off \T^\ at 1; but |^| ^ 1
everywhere, (b) is also obvious because T^ leaves / invariant and Ti can only decrease
I / I . (c) follows from the facts that T-z increases \g\, the map * ̂  t / { f 2 + t) is monotone
increasing for * > 0, and g2 < g 2 / ^ 2 + g2) since f2 + g2 ^ 1. Indeed, (d) gives a more
quantitative estimate. To prove (d) we recall that T^ ==: {f,h}. If f2 + h2 <, 1 and
x\ ̂  g2 then |̂ | = \h\ = \x^\ and (d) is certainly true. If f2 + h2 > 1 and x\ > g2 then

92 - 92 = 7^-1 - 92 ^ V-^———. - 92
f + ̂ 2 1 - ^ 2 + ^ 1

1 — <72 1 -r2
1 ? —fr2 ^1 > 2^^^iT^i
- y r 2 9-1 -^ -L — w? r 9 9i

__________^_______•T* /^ ^> ________~-\^f~ n~\

l-g^+X^'^^TT^^'^'

We claim that ^(Ts^) ^ ^(^). As far as the gradient term is concerned T^ replaces g
by the harmonic function x^ on the set where \g\ < \x^\. This certainly lowers the gradient
term. The J term does not increase by property (a) above, since J ( t ) is decreasing for
0 <t < 1.

Now we iterate Ts and denote (/n^n) = ^n ''= T^^. By (b) and (c) fn and gn are
bounded monotone sequences and converge pointwise to limit functions / and ^. Since
<?('0) is weakly lower semicontinuous we have that ^(^) <: £{^\ where ^ = (f^\ It is
clear that '0 satisfies the correct boundary conditions and hence is in C.

The only thing left to check is that ff(.r)2 ^ x\. If we define dn{x) = \x\ — gn(x)2]^-
property (d) can be rewritten as an-{-i{x) <, an{x)(2x^/(l + a-j)), which shows that On{x)
converges to zero pointwise for all x G D. •

We thank Laszlo Erdos for many valuable discussions.
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