@incollection{JEDP_1994____A7_0, author = {Gheorghe Nenciu}, title = {On exponential decay of solutions of {Schr\"odinger} and {Dirac} equations : bounds of eigenfunctions corresponding to energies in the gaps of essential spectrum}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {7}, pages = {1--10}, publisher = {\'Ecole polytechnique}, year = {1994}, zbl = {0948.35506}, language = {en}, url = {https://proceedings.centre-mersenne.org/item/JEDP_1994____A7_0/} }
TY - JOUR AU - Gheorghe Nenciu TI - On exponential decay of solutions of Schrödinger and Dirac equations : bounds of eigenfunctions corresponding to energies in the gaps of essential spectrum JO - Journées équations aux dérivées partielles PY - 1994 SP - 1 EP - 10 PB - École polytechnique UR - https://proceedings.centre-mersenne.org/item/JEDP_1994____A7_0/ LA - en ID - JEDP_1994____A7_0 ER -
%0 Journal Article %A Gheorghe Nenciu %T On exponential decay of solutions of Schrödinger and Dirac equations : bounds of eigenfunctions corresponding to energies in the gaps of essential spectrum %J Journées équations aux dérivées partielles %D 1994 %P 1-10 %I École polytechnique %U https://proceedings.centre-mersenne.org/item/JEDP_1994____A7_0/ %G en %F JEDP_1994____A7_0
Gheorghe Nenciu. On exponential decay of solutions of Schrödinger and Dirac equations : bounds of eigenfunctions corresponding to energies in the gaps of essential spectrum. Journées équations aux dérivées partielles (1994), article no. 7, 10 p. https://proceedings.centre-mersenne.org/item/JEDP_1994____A7_0/
[A] S. Agmon, Lecture on Exponential decay of Solutions of Second Order Elliptic Equations : Bounds on Eigenfunctions of N- body Schrödinger Operators, Princeton, Princeton University Press, 1982. | Zbl
[BG] A. Berthier-(Boutet De Monvel) and V. Georgescu, On the point spectrum of Dirac operators, J. Funct. Analysis 71, 309-338 (1987). | MR | Zbl
[BNN] A. Boutet De Monvel, A. Nenciu and G. Nenciu, Perturbed periodic hamiltonians : essential spectrum and exponential decay of solutians, submitted to Lett. in Math. Phys.
[BCD] Ch. Briet, J.-M. Combes and P. Duclos, Spectral stability under tunneling, Comm. Math. Phys. 126, 133 (1989) | MR | Zbl
[C] U. Carlson, An infinite number of wells in the semiclasical limit, Asymp. Analysis 3, 189-214 (1989). | Zbl
[CT] J.-M. Combes and L. Thomas, Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators, Commun. Math. Phys. 34, 251-270 (1973). | MR | Zbl
[CFKS] H. Cycon, R. Froese, W. Kirsch and B. Simon, Schrödinger operators, Berlin, Springer 1987. | Zbl
[D] F. Daumer, Equation de Schrödinger dans l'aproximation du tightbinding, Thse, Universit de Nantes, 1990.
[FH3O2] R. Froese, I. Herbst, M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, L2-exponential lower bounds to solutions of the Schrödinger equation, Commun. Math. Phys. 87, 265-268 (1982). | MR | Zbl
[GT] D. Gilbarg and N. Trudinger, Elliptic Partial Differential equations of Second Order, 2nd edition, New York, Springer 1983. | MR | Zbl
[HN] B. Helffer and J. Nourrigat, Decroisance a l'infini des functions propres de l'operator de Schrödinger avec champ electromagnetique polynomial, J. d'Analyse Math. 58, 263-275 (1992). | MR | Zbl
[HS1] B. Helffer and J. Sjostrand, Multiple wells in the semiclassical limit, Commun. PDE 9, 337-408 (1984). | MR | Zbl
[HS2] B. Helffer and J. Sjostrand, Multiple wells in the semi-classical limit III. Interactions through non-resonant wells, Math. Nacht. 124, 263-313 (1985). | MR | Zbl
[HS3] B. Helffer and J. Sjostrand, Effect tunnel pour l'equation de Schrödinger avec champ magnetique, Annali Scuola Normale Sup. Pisa 14, 625-657 (1987). | EuDML | Numdam | MR | Zbl
[H1] I. Herbst, Lower bounds in cones for solutions to the Schrödinger equation, J. d'Analyse Math. 47, 151-174 (1986). | MR | Zbl
[H2] I. Herbst, Perturbation theory for the decay rate of eigenfunctions in the generalised N-body problem, Commun. Math. Phys. 158, 517-536 (1993). | MR | Zbl
[MP] A. Mohamed and B. Parrise, Approximation des valeurs propres de certaines perturbations singuliers et applications a l'operator de Dirac, Ann. Inst. Henri Poincar 56, 235-277 (1992). | EuDML | Numdam | Zbl
[RS] M. Reed and B. Simon, Methods of Modern Mathematical Physics IV : Analysis of Operators, New York, Academic 1978. | MR | Zbl
[W] X. P. Wang, Puits multiples pour l'operator de Dirac, Ann. Inst. Henri Poincar 43, 269-319 (1985). | EuDML | Numdam | Zbl