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1 Introduction
The motivation for our work comes mainly from the one-electron theory of
quantum solids, more exactly from the spectral theory of "perturbed" peri-
odic Schrodinger operators. We shall give below two examples; a more detai-
led description of other "models of disorder" can be found in [BNN]. Consider
a periodic lattice, Fp = {a = ElLi^ai | mi € Z, {a^f - basis in R3},
and

Ho = -A + Vper(x) (1.1)

where Vper(x) € L^(R3) and
Vper(x + a) = Vper(x), all a e Fp.

The hamiltonian Ho is the basic object of the theory of periodic crystals
and its spectral properties are well understood [RS]. Let now F be a set in
R3 with the property that

inf | a - b | > ^ > 0 (1.2)a,b€F; a^b ' •— ^ '

and V^x) a rapidly decreasing potential. The "impurity" model of quantum
solids is described by the hamiltonian

H=Ho+^V(y.-b) (1.3)
b€F

(we assume that the decrease of V{x) is sufficiently fast as to assure that
Eber ̂ (x - b) is uniformly locally L2 ). If F consists of a single point, (1.3)
becomes the usual "one-impurity model" hamiltonian:

^Permanent address: Dept. Theor. Phys., Univ. of Bucharest and Inst. of Math. of
the Romanian Academv. Bucharest. Romania.
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Himp == Ho + V(X) (1.4)

whose spectral and scatering theory is again well developed. Consider now
for A > 0:

H^=Ho+^V^-Xb). (1.5)
ber

For A —> oo, (1.5) describes the physical situation in which the impurities
are far one from each other. At the heuristic level it is "known" that the
spectral properties of Himp and H^ are related; in particular, if E e p{Ho) is
an eigenvalue of Himp then in the limit A —^ oo, H^ has a "miniband" arround
E with a width which shrinks exponentially as A —> oo. The situation is
similar to the one encountered in the usual tight-binding limit in which Ho
is replaced by —A. Since the main technical ingredient in the study of
the tight binding (as well as semiclassical) limit [D],[C],[HS1-3],[BCD] is the
exponential decay of the eigenfunctions of -A + V(x.) , the first step in
the study of the impurity tight binding limit must be a good control of
exponential decay of the eigenfunctions of Himp corresponding to energies in
P(^o).

Another, interesting from the physical point of view, particular case of
(1.3) is the one in which F is contained in a plane, say x^ = 0, (x =
(a;i,^2?^3))- In this case the physical heuristics indicates that the (gen-
eralised) eigenfunctions of (1.3) corresponding to energies in p(Ho) decay
exponentially as | x^ |—>oo.

One can consider also the same problems when a magnetic field is added
i.e. Ho is replaced by (P — a)2 or at a higher level of complexity by (P — a)2^-
lper(x). The simplest question in this context, is to prove the exponential
decay of the eigenfunctions of

, . 9 Bx^.^ , . 9 Bx\^ _ - , 9(-'a^+-Y)+(-'9^--^)+vw• x e R

for energies outside the set of the Landau levels.
Following the seminal work of Combes and Thomas [CT] and of Ag-

mon [A] there is an enormous literature on exponential decay of eigenfunc-
tions in the N-body problem and precise results have been obtained (see e.g.
[A],[H1],[H2], and references therein; for extensions of Agmon type results
to the magnetic field case see [HN],[HS3]). Since we are interested in ener-
gies which may belong to the essential spectrum of H and more important
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are not below the essential spectrum of the "asymptotic" hamiltonians, a
direct application of the Combes-Thomas-Agmon analysis is not possible.
(The results in [BG],[W],[MP] concerning Dirac operator are for energies in
(—m,m) and potentials vanishing at infinity, when one can still apply the
Agmon theory to the square of the Dirac operator; see the remark at the
end of Section 3.) Moreover due to the fact that the potential does not van-
ish at infinity, one cannot apply the techniques based on Mourre estimates.
In [BNN] an elementary method ( covering many cases of physical interest,
but not the magnetic field case) to prove exponential decay has been used.
The result below is that a Combes-Thomas-Agmon type analysis provides
exponential upper bounds under very general conditions. It turns out that
one can carry the Agmon analysis to the case at hand by replacing his A-
positivity condition with the strict injectivity of the Combes-Thomas rotated
operator (see (2.4),(2.8) below and also [HI]). Exponential decay of eigen-
functions, in some cases when A-positivity condition is not fulfilled, has been
also obtained by Helffer and Sjostrand [HS2] in their deep study of tunelling
through nonresonant wells in the semi-classical limit. We obtain only ( very
likely non optimal) upper bounds. The problem of the lower bounds (see e.g.
[FH302], [H2] and references therein for the N-body case) or of the actual
behaviour at infinity of the eigenfunctions seems to be harder and remains
open. Detailed proofs and applications will be given elsewhere.

2 The results.
In what follows f2 C R^ is a domain with (smooth) boundary <9Q, and
W^W are the standard Sobolev spaces [GT].

2.1 The Schrodinger case.
Consider in L2^) the Schrodinger operator

^^(P-^x^+^x), P=-zV (2.1)

where

a e CLLW)"; Va e Î (Q); p = marr{n,4}; q e SnW (2.2)
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(see [CFKS] for the definition of Sn; we recall that for n < 3,g € Sn(^S) if
and only if
sup^o J{ix-yi<i}n^ 19(y) I2 ^y < o°-

As a consequence of (2.2), H is well defined and symmetric ( but, in
general, not essentially self-adjoint) on C^°(f^).

Definition 1 (S) Let E e R. -0(x) e H^c2 )̂, ^ <$azd to he a slowly in-
creasing solution of {H — E)ip = 0 in Q if it is a weak solution^ i.e. for all
y?(x) € Cg°(f2) ( (•, •) denotes the scalar product in L2^) )

{{H^E)^)=0 (2.3)

and for all 6 > 0 , exp(-6(l+ | x l2)172)^) € L2^)

For ^(x) : Q -^ R, /i e C2^), we consider the "rotated" operator

H{h) =H- iB{h)- | V^ l^ exp(-/i)ffexp(fc) (2.4)

with
B(h) = (P - a) • V/i + V/i • (P - a) (2.5)

defined on C^°(^).
For d > 0 we set

Qd = {x e ^ | dist(x, 9fl) > d} (2.6)

and for /^(x) as before and 5,6 > 0

^(x) = -<$(!+ | x |2)1/2 + /^(x)(l + ̂ (x))-1. (2.7)

Theorem 1 (S) Suppose:
i. ^(^) is a slowly increasing solution of {H — E)^ = 0 in Q, | E \< Eo.
ii.There exist 60, Co, c > 0 such that for 0 < 6 < 6o, 0 < e < EQ and all

y e c^w
||(ff(-^)-E)^||>c||^||. (2.8)

Then there exists K < oo depending upon a, g, d, c and EQ such that for
all 0 < 6 < 6o

f | e/l6•o(x)^(x) |2 dx ̂
-'^2d

^ /' (1+| V^o(x) |2) | ̂ ^^^(x) |2 dx. (2.9)
^o\n2d
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2.2 The Dirac case.
Consider now, in (I/2^))4, the Dirac operator

D = a • P + /3m + Q(x), Q(x) == Qi(x) + Oa(x) (2.10)

where Qi(x) are 4 x 4 hermitean matrices satisfying:

/ I IQ^flx-yr 3 ^^, al lxeQ, p<2
•/{|x-y|<l}n"

iiQ^ii^E^r^'i^^172
agr I x - a I

where T is a set in ^ such that infa^b; a,ber | a — b |> 0

Definition 2 (D) Let E € R. ^(x) e (L^(^))4 ^ satrf to he a slowly
increasing solution of (D — E}^ = 0 in Q, if it is a weak solution, i.e. for all
$(x) € (Co'°(n))4 ( < • , • > denotes the scalar product in (L2^))4 )

< {D - E)^>, ̂  >= 0 (2.11)
and for all 8 > 0
exp(-6(l+ | x l2)2/2)^) e (L2^))4

As in the Schrodinger case, for h : fl, —> R,^ € C^f!) we consider the
rotated operator

D(h) = exp(-/i)Pexp(/i) =D-ia-^h. (2.12)

Theorem 2 (D) Suppose:
i. ^(x) t'5 o slowly increasing solution of (D — E)^f = 0 in ^

n. T/iere exist §o,£o > 0, c > 0 such that for 0 <: 6 <: 6o, 0 <: e < eo and
all ̂  e (C^°(^))4

||(D(-^)-E)^||^c||$|| (2.13)
T/ien </tere exists K < oo depending upon Q,d,c such that for all 0 <: 6 < 6o

[ T | ea;p(/4.o(x))^-(x) |2 dx ^ K I ^ | exp(^o(x))^-(x) |2 rix
•'^djsi •/n\n2<(j=i

(2.14)
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2.3 An example.
Let

^n,R == {x € R3 [ n • x > R, | n |= 1, R > 0} C R3 (2.15)
H == Ho |^(n^) (2.16)

(see Section 1 for Ho)
Suppose E € ?(-%), | E \<, Eo, a = dist(E, o-(Ho)) and let -^ be a slowly

increasing solution of {H — E)^ = 0 in fl.n,R' Take in Theorem IS, /i(x) of
the form

/i(x) = /^(n • x - 7?); /A > 0. (2.17)
It turns out that for sufficiently small ^ the condition (2.8) is fulfilled.

For example, by standard perturbation arguments, (2.8) is fulfilled for all
^ < IJIQ where IM) is given by

a^ + 2^o || P . n(Ho - E)-1 ||= 1. (2.18)

Then from (2.9) one obtains for all p, < IM)''

f [ ̂ (l+|xp)V^(n.x-^(^ [2 ̂  <

Jn-x>,R-}-2d

canst [ | e-^W^^x) |2 dx. (2.19)
JR+2d>n'x>.R

If in addition one supposes that

sup / l^x)!2^^ (2.20)
x€f2n.fi •/{|x-y|^l}n"n,-R

then one obtains (y == ^n + y±, y_L-Ln)

sup / | e^{zn + y^) |2 dy < oo. (2.21)
x^eR2./2>.R+2d; |y_L-Xj_|^l

The value of ^o given by (2.18) is far from being optimal even at the
qualitative level. In particular in the limit a —> 0 it gives p,o ^ a while, as
well known, for E < infer {Ho) one has IJLQ ^ a1112. A more carefull analysis
shows that the same is true for E in the gaps of Ho''

Theorem 3 There exists k > 0 such that (2.8) is fulfilled for p. < ka^2.

The best value of k (very likely it depends upon n ) is still to be found.
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3 Outline of the proof.
We shall outline the proof in the Schrodinger case; the proof in the Dirac
case is similar and much simpler, due to the fact that D is first order. We
start with the following "localisation energy lemma", going back implicitely
at least to Agmon [A] (I was kindly informed by T. Hoffmann-Ostenhof that
it is actually much older) and having a clear physical meaning: it gives the
amount of kinetic energy due to localisation by / of the "eigenfunction" -^.
Let for 0i, 02 ^W^W

h[^ 02] = I (P-a)0i(x)(P - a)02(x)dx+ / 0i(x)g(x)^(x)dx.
Jn Ja

Lemma 1 Let ̂  be a solution of {H - E')zp = 0 in fl, and f : fl, —»• R, / €
C^°(0). Then

W, W - £W, /^) = ( ,̂ | V/ |2 VQ

Let h: fl, -^ R, he C°°(^), g e C^°(^). Since for all y? e C^^):

0=({H- E}^ = (HW - E)e-hv,eh^,

((HW - E^^g^) = ([g^W^e^) = (<p,F) (3.1)
with

F = {-2i(P - a) • Vg - Ag + V7h • Vg}eh'lp. (3.2)

The next lemma gives (via Lemma 1) the control of {F,F):

Lemma 2 Suppose supp g C ^i<i- Then there exist a < 1, b < oo, depending
upon a, q, d such that

(F,F) ̂ (eS^me^)

with
4n n

w(x) = ——— ̂ m,(x) + {-Ag + 2V/i • V^)2
1 - a i=i

where

^)=|(^))V^V(^))^(|^^(^

vii-7



The next and the last ingredient is a regularity lemma:
Lemma 3 Suppose

sup(| V/i |)+ | A^ |) < M < oo (3.3)
Q

and g :fl. —^ R, g e C^°(^). TTien H{±h) Icg^/s) is closable in L^f^/a)
and e '̂0 belongs to the domain of its closure.

^From (3.1), due to Lemma 3,for h satisfying (3.3) and g C C^°{fl,d)
{H{-h) - E^g^ = R

Suppose now h^e satisfies (2.8). Then using again Lemma 3:
(e^^, e^g^Y12 < C~\F, F)172 (3.4)

Let now ^(x) : Q ̂  R, gd € ^^(Q), 0 < ^(x) < 1;
, . _ f 1 for x € f^2d

ff^xj - ^ Q for x ^ ̂
n Ffinj(v\

sup(| V^(x) | +^ | -|̂  |) = G(^) < oo.
xeo i==i ^ î

Take gn € C^°(^) satisfying ^(x) —> 5d(x) together with the derivatives up
to second order and sup^C?(^n) <: Gd < oo. Then from (3.4), Lemma 2 and
Lebesgue dominated convergence theorem:

{ | ̂ ^(x) |2 dx <
•^2d

^ { (1+| V/^(x) |2) | e^^x) |2 dx. (3.5)
*/n\^2d

and the result in Theorem 1 follows taking the limit e —> 0.
Remarks :

i. If for some 25, H satisfies the Agmon's A condition then, as well known,
the exponential bound follows directly from Lemma 1: one takes / == geh

and a removing cut-off procedure as above gives the result.
ii. In the Dirac case (supposing \P e (W^c2^))4) one has instead of

Lemma 1:
< D/^, Df^ > -E2 < /^, f^ >=< ^, | V/ |2 ̂  >

so for energies for which D2 — E2 > X the exponential bound comes again
directly, la Agmon, without using (2.13) [W],[MP] (see also [BG]).
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