@incollection{JEDP_1993____A18_0, author = {Mikhael Gromov and Mikhail A. Shubin}, title = {The {Riemann-Roch} theorem for elliptic operators and solvability of elliptic equations with additional conditions on compact subsets}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {18}, pages = {1--13}, publisher = {\'Ecole polytechnique}, year = {1993}, mrnumber = {94k:58143}, language = {en}, url = {https://proceedings.centre-mersenne.org/item/JEDP_1993____A18_0/} }
TY - JOUR AU - Mikhael Gromov AU - Mikhail A. Shubin TI - The Riemann-Roch theorem for elliptic operators and solvability of elliptic equations with additional conditions on compact subsets JO - Journées équations aux dérivées partielles PY - 1993 SP - 1 EP - 13 PB - École polytechnique UR - https://proceedings.centre-mersenne.org/item/JEDP_1993____A18_0/ LA - en ID - JEDP_1993____A18_0 ER -
%0 Journal Article %A Mikhael Gromov %A Mikhail A. Shubin %T The Riemann-Roch theorem for elliptic operators and solvability of elliptic equations with additional conditions on compact subsets %J Journées équations aux dérivées partielles %D 1993 %P 1-13 %I École polytechnique %U https://proceedings.centre-mersenne.org/item/JEDP_1993____A18_0/ %G en %F JEDP_1993____A18_0
Mikhael Gromov; Mikhail A. Shubin. The Riemann-Roch theorem for elliptic operators and solvability of elliptic equations with additional conditions on compact subsets. Journées équations aux dérivées partielles (1993), article no. 18, 13 p. https://proceedings.centre-mersenne.org/item/JEDP_1993____A18_0/
[G-H] P. Griffiths, J. Harris : Principles of algebraic geometry. John Wiley & Sons, New York e.a., 1978. | MR | Zbl
[G-S] M. Gromov, M.A. Shubin : The Riemann-Roch theorem for elliptic operators. In : I.M.Gelfand Seminar, part 1, American Math. Soc., Providence, R.I., 1993. (Also Preprint ETH, Zürich, 1991.) | MR | Zbl
[H] L. Hörmander : The analysis of linear partial differential operators, vol. III. Springer-Verlag, Berlin e.a., 1985. | Zbl
[S] M.A. Shubin : Pseudodifferential operators and spectral theory. Springer, Berlin e.a., 1987. | MR | Zbl
[St] E. Stein : Singular integrals and differentiability properties of functions. Princeton Univ. Press, 1970. | MR | Zbl
[T] H. Triebel : Theory of function spaces. Birkhäuser, Boston, 1983. | Zbl