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1. Introduction.

The classical Riemann-Roch theorem (see e.g. [G-H]) can be considered as a connec-
tion between two dimensions. The first one is the dimension of a linear space of meromor-
phic functions on a compact Riemann surface (or a non-singular algebraic curve over C)
which are allowed to have poles up to an assigned order at any point from a given finite set,
and are required to have zeros of at least assigned order at any point from another finite
set. The second one is the dimension of a space of meromorhpic (l,0)-forms with similar
restrictions but with poles and zeros changing places. The information about poles and
zeros is conveniently encoded into a notion of divisor which is just a finite subset in the
given Riemann surface with integers (multiplicities) assigned to every point in this subset.
The result includes the degree of the divisor which is just the sum of all multiplicities.

In our previous paper [G-S] we proved a version of the classical Riemann-Roch the-
orem for solutions of general elliptic equations with point singularities. Here we extend
the results to much more general singularities supported on arbitrary compact nowhere
dense sets. The only restriction is that the allowed singularities should be taken from a
finite-dimensiomnal space. Dually a finite set of conditions may be imposed on another
nowhere dense compact set (which should be disjoint with the set where singularities are
allowed). This leads to a notion of rigged divisor which includes two disjoint nowhere
dense compact sets with finite-dimensional distribution spaces supported on them. Then
the allowed singularities on the first given set are described as singularities of solutions
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which may be extended as distributions to the whole given manifold so that after applying
the given elliptic operator we get into the first given space of distributions. The conditions
imposed on the second compact set are just orthogonality conditions to the second space
of distributions. The main theorem then connects the dimension of the space of solutions
having the allowed singularities and satisfying the imposed conditions, with another di-
mension defined in the same way from the dual (or inverse) divisor which is obtained by
changing places of two given compact subsets and distribution spaces (and replacing the
given operator by the adjoint operator). As in the classical Riemann-Roch theorem the
corresponding formula includes a degree of the divisor. The degree is defined in terms
of the dimensions of the given distribution spaces and two other naturally arising "sec-
ondary" distribution spaces. This clarifies the appearance of combinations of the binomial
coefficients in the case of point divisors in [G-S].

The Riemann-Roch type formula described above is proved at the same time with
a Duality Theorem which gives necessary and sufficient solvability conditions of elliptic
equations (with a right-hand side) if the solution is allowed to have singularities of the
described type and is required to satisfy finite number of orthogonality conditions. This
result seems important from the analytical point of view. It implies for instance local
solvability results in smooth sections near a compact set with a finite number of conditions
imposed on the solution. Basically the result here is that the local solution always exists
provided obvious necessary conditions are satisfied. The simplest example is that the
Poisson equation Az& = / can be always solved in a neighbourhood of a compact set
D C R/1, mesD = 0 if u is subject to any finite number of orthogonality conditions to
measures supported on D or to first order derivatives of such measures.

This paper is written completely independently of [G-S]; in fact the proofs are even
simpler in this generality. But the reader should keep in mind that some applications and
examples given in [G-S] are not repeated here being specific for the case of point divisors.

For the sake of simplicity we consider here only the case of compact manifolds without
boundary. The paper [G-S] treated also the case of non-compact manifolds with boundary
(with proper boundary conditions and conditions at infinity). Similar generalization is
straightforward here as well and will be given in a more detailed paper.

2. Preliminaries and Main Results.

A. Let X be a compact closed C^-manifold, E a C°° complex vector bundle over X.
For any open subset U C X denote by C°°(U^ E) the linear space of all C^-sections of E
over U. We shall also need the space of all distributional sections of E over U which will
be denoted V{U,E). If D is a compact (closed) subset in X then £^(X,E) denotes the
linear space of all / e T>'{X^ E) such that supp/ C D.

For any C°° vector bundle E over X denote by E* any vector bundle which is supplied
with a C°° bilinear or sesquilinear nondegenerate duality of bundles Ex E* -^ ft(X) where
^(X) is the density bundle over X. Then we obviously have bilinear or sesquilinear duality
on sections:

(.^^(X^xC^in-C,
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(n,v)= / {u(x),v(x))^,
Jx

(u,v)= I [u[x),v[x))^,
Jx

where (•, -)a; denotes the given duality in the fibers over the point x e X.
Let JE7, F be (7°° vector bundles over X,

A^^X^^C^^F)

an elliptic linear differential operator of order d. Then the adjoint operator is again an
elliptic linear differential operator of order d

A* : C°°{X, F') -^ C°°{X, F*),

such that
(AZA, v) = (zx, A*i;); u € C00^, F), z; 6 C00^, F*).

Definition 2.1. Rigged divisor (associated with A) is a tuple

^(I^L4-;?---,^),

where D^- are compact (closed) nowhere dense disjoint subsets in X, Z^ are finite-
dimensional linear spaces of distributional sections,

^C^^F), L~C^-(X,^).

So the sections in L^ (L~) are supported on D^ (resp. D~). Denote also ̂  == dim L^.
Hereafter dim L for a complex linear space L will always mean dimp L.

We shall also need "secondary" spaces of distributional sections which are defined as
follows:

L^ = {u\ u e S^{X,E\ An € L4-}, £- = {t;| v € ^-(X,F*), A*z; e L-}.

Denote also ̂  = dim L±. Note that f^ < ̂  because A, A* are injective on €^ due to
the standard elliptic regularity result.

Definition 2.2. Degree of the rigged divisor [L is the following integer:

deg )̂ = (^ - f4-)«(r ~ r).

Definition 2.3. Inverse divisor to a divisor fi = (Z)4',^4';^'",^") assotiated with
the elliptic operator A is the rigged divisor

/^^(zr^zr^),

associated with the adjoint operator A*.
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Note that
degA.(AA ^-deg^/z).

Now we shall introduce the main space of solutions with allowed singularities on D^~
and vanishing conditions on D~~.

Definition 2.4. Denote

L( ,̂ A) = {u\ u e C^^X-D^, E), 3u e V\X, E), u = u on X-D^, An e L4-, (n, L-) = 0};

r(/z, A) = dim L(/z, A).

Here (u,L~~) means the set {{u,g)\g e L~} C C and we write 0 instead of {0},
so the equality (ZA,L~~) = 0 means the u is orthogonal to L" with respect to the given
duality. This makes sense (in spite of the fact that u is defined on X - D^ only) because
all distribution sections from L~~ are supported on D~" and D"" n D^ = 0 according to
Definition 2.1.

We shall use the notation ind A for the standard index of A

ind A = dim Ker A - dim Coker A

in spaces of C°°-sections. This index is given by the Atiyah-Singer index formula.

Now we can formulate our first main result.

Theorem 2.5. (The Riemann-Roch Theorem for the rigged divisor p)

(2.1) r(^.A) = indA+ deg^/,) + rQ^A*).

Example 2.6. Let us consider a particular case of "point divisors". Namely, let
D^ be finite sets. Suppose that D^~ = {x^... ,Xk}, D^ = {xk+i,... ,a;m} and let also
integers pi,... ,pk > 0 and pk+i,... ,pm < 0 be given. This corresponds to the point
divisor p. = x^x^ .. .x^ in notations of [G-S]. Then we can introduce the distribution
section spaces L± which are locally represented as

^-{/i/o^ E E ^^{x^x^
±pi>o H îpii-i

where 6 means the Dirac ^-function, 6^ denotes its derivative corresponding to the mul-
tiindex a, and Cia are vector coefficients from C9 where q is the dimension of the fibers of
the bundles E and F (they are equal due to the ellipticity of A).

Since A is elliptic (of order d) it is easy to check that the "secondary" spaces have a
similar form

L±={v\v{x}= ^ ^ ^^(o:-^)}.
±Pi>0 |a|^|p.|-l-d
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Now an easy combinatorial exercise shows that

± Y^ fn+\pi\-l\ ~± ^ fn+\pi\-l-d\
d iml^g^ f n )' d lm^±=g>,;( ' 1 .

±p.>o \ n / ±p.>o \ n /

where (^) = ^ f/^n) * ^ -^ ^ n 8Ln(^ 0 otherwise. It follows that

, / . v-^ . |Y|p.|+n-l\ /bil+n-1-dM
^'^^K n H n )]•

It is explained in [G-S] that the space L(/^,A) in this particular case can be described in
terms of the behaviour of solutions near the points a:i,... ,Xm without referring to their
distribution extensions on X. In this way we arrive to the main Riemann-Roch type
theorem in [G-S] as a particular case of Theorem 2.5 when fi is a point divisor.

B. First idea of the proof of Theorem 2.5 is a localization which begins with the
introduction of the following space:

r(X,^,A) = {u\u 6 C°°(X - D-^,E),3u € V\X,E},u == u on X - Z^,
An e L^ + C°°{X, F), {u, L~) = 0}.

Here the difference with the definition ofL(/x, A) is that Au = / is allowed to be modified by
adding any C°° section. In particular F(X, /^, A) contains the space C^°{X— (D'^UZ)""), E)
of all C^-sections of E having a compact support in X — (D^~ U J^"").

The next space that we need is the space of all possible regularizations of sections
fromr(X,/A,A):

F(X, ̂  A) = {u\ u e V\X, £7), Au € L4- + C°°(X, F), (n, L-) = 0}.

Lemma 2.7. The following sequence is exact:

(2.2) 0 —. L4- -^ F(X, ̂ , A) -^ r(X, ̂  A) —. 0,

w/iere i and r are natural inclusion and restriction maps.

Proof. The statement is obvious from the definitions of all the spaces involved. D

Now let us find out what happens if we apply A to a section u € F(X, JLA, A). Obviously
Au can be extended to a C^-section of F. Let us denote this extension by An. Besides
we have

(Au, £-) = (u, A*Z-) c (n, L-) = 0.

This motivates the introduction of the following space:

(2.3) r^(X, A) == {/| / e C°°(X, F), (/, Z~) == 0};
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then A defines a linear map

A:r(x,/.,A)—.r^(x,A).
Note that KerA = L(/^, A).

Definition 2.8. The duality

r(X,/x,A) x r^-i(X,A*) —. Co(2.4)

is defined by
(n,/) = (r^,/), n e r(X,/.,A), / € r^-i(X,A*),

where r is the restriction map from (2.2).

Note that this duality is well defined due to the orthogonality condition in (2.3) (with
^ and A replaced by /x~1 and A*).

The duality (2.4) is obviously non-degenerate since both spaces involved can be con-
sidered as spaces of C^-sections on X — (D4" U D"} and both include all sections with
compact support in X — (JD4' U J9~).

Replacing A and /z by A* and /z"~1 we get a similar duality

(2.5) r^(X, A) x F(X, ̂ \ A*) —. C.

Lemma 2.9. We fcave

(A^^^A^), tAer(X,/z,A), verpC,/^1^),

w/iere (/ie dualities on the left and right hand sides are the dualities (2.5) and (2.4) respec-
tively.

Proof. The statement becomes obvious if we pass to the extensions of u and v to the
distribution sections in r(X,/z,A) and ^(X,/2"''l,A'tt) respectively. D

Now let ( • , • ) : H x "H! —^ C be a bilinear or sesquilinear duality (or pairing) of
complex linear spaces. For any linear subspace L C H' define its annulator or orthogonal
complement with respect to the duality (•, •) as follows:

L°={/|/e^, (/,L)==o.}.

Hence L° is a linear subspace in 7Y. Similarly if L is a linear subspace in H then L° is
defined as a linear subspace in T-^7.

In the following theorem which is our second main result L° will mean the annulator of
L with respect to the dualities (2.4) or (2.5). So if L C F(X, /z~1, A") then L° C f^(X, A)
etc.
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Theorem 2.10. (Duality Theorem)
(i) ImA = (KerA*)0 i.e. f € ImA if and only iff e F^(X,A) and (/.KerA*) = 0.
(ii) dim Coker A == dim Ker A*.

This theorem gives solvability conditions of the equation Au == / in the class F(X, ̂  A)
which consists of sections which may have some singularities on D^ and should satisfy some
orthogonality conditions on D~.

C. Now we turn to a local solvability result of the equation Au == / in smooth sections
near a closed nowhere dense set D C X with a finite number additional orthogonality
conditions imposed on u. First introduce the space of germs of G^-sections of E on D:

C°°(D,E) == lim C°°(U,E),v / tOD v /

U runs through the set of all open neighbourhoods of D. Suppose a finite-dimensional
linear subspace L C £^{X^E*) is given. Given / 6 C°°(D^F) we want to find a solution
u € C°°{D, E} of the equation An = / such that {u, L) = 0.

Let us introduce the "secondary" space

L = {v\ v € ̂ (X, F'), A^v € L}.

Then the obvious necessary condition on / is (/, £) == 0 since (An, L) = (n, A*£) C (n, L).

Theorem 2.11. (Local Solvability Theorem) If f e C°°{D,F) and (/,Z) = 0 (Aen
f/iere ea^te IA e C°°{D, E) such that Au = / and (n, L) = 0.

A particular case of Theorem 2.11 when D is a point, say 0 € IV*, and L is obtained
as L^ in Example 2.6 (with k = 1), was discussed in [G-S]. It says that if the right-hand
side of an elliptic equation Au = / of order d has a zero of order m at the origin, then
locally near the origin there always exists a solution u having there a zero of order m + d.

In some particular cases the necessary conditions might become void, so the solvability
holds without any conditions on /. We shall give an example of this situation now. In this
example C°°(D) will denote the set of germs of all C^-functions near D (or C°°{D,E)
with E = X x C).

Corollary 2.12. Let A be the standard Laplacian on R71, D a compact subset in R71

with the Lebesgue measure 0. Suppose that for any multiindex a with \a\ < 1 and any
j = 1,..., k a complex-valued Borel measure p,aj supported on D is given. Then for any
f € C°°{D) there exists u e C°°{D), such that An == / and

(2.6) ^ / u^ d^
l̂ î

^c^—O, j = l , . . . , f c .

Note that derivatives of order 2 can not be allowed here. For example the condition
(An)(0) = 0 (which can be obviously written in a form similar to (2.6) but with second

XVIII- 7



order derivatives) implies /(O) = 0 for the right-hand side of the equation An === /, so /
can not be an arbitrary C°° function then.

3.Proofs.

We shall use the notations from Sect. 2. Let us start with the proof of the following
important Lemma:

Lemma 3.1.

(3.1) ind A = ind A + deg^ (/z) .

Proof. Consider the following commutative diagram

o —> L4- -^ r(x,^A) -^ r(x,^,A) —> o
[As [A [A

0 —^ L4- -̂  r^(X,F)©L4- -̂  r^(X,F) —. 0

where the first row is as in (2.2), i\ and TT-I are natural inclusion and projection respectively
and AS, A are restrictions of A to the corresponding spaces of distributions. Both rows in
the diagram are exact. Due to the well known algebraic property of the Euler characteristic
we have

ind A = ind A — ind AS .

But
indAs = dim£4- - dimL^- = ̂  - ̂  .

Hence

(3.2) ind A == ind A + (/+ - f4-) .

Now consider the following space of smooth sections:

F^(X, A) = {u\ u C F(X, E), (u, L~) = 0}.

Then the following diagram is commutative:

o -^ r^{x,E) —. r(x,/z,A) ^ L^ —. o
I ̂  I A I Id

4^ 4^ 4-

0 -^ F^(X,F) —^ ^(X.F)®^ -^ L-*- -^ 0

where 7T2 is a natural progection, Ap, is the restriction of A.
The rows of this diagram are again exact. This is not obvious in the term L^ of the

first row only. In this term exactness means that the equation Au = / 6 £^ (X, F) can be
always solved modulo C°° sections (with the solution u € F(X, /A, A)). But this follows e.g.

XVIII-8



from the existence of a pseudodifferential parametrix (see e.g. [H,vol.3] or [S] for necessary
facts). Namely, let B : C°°(X,F) -^ C°°(X,E) be a (classical or polyhomogeneous)
pseudodifferential operator such that BA = J-T with an infinitely smoothing operator T
(an operator with a C°° Schwartz kernel). Using the standard extension ofB to distribution
sections we can now take u = Bf to obtain Au = f + g with g e C°°{X, F). Replacing u
by u + v with v e C'°°(X,^) supported near D~ we can make u = 0 near D~; then we
shall obviously have u € T(X^ p,, A).

From the last diagram we find

(3-3) ind A = ind Ap,.

Now consider the commutative diagram

o -^ r^(x,A) -^ F{X,E) ^ (L-Y -^ o
[^ | A | (A*)'
•̂  „ 4- 4.

o — r^x,F) -^ r(x,F) p^ (L-y —. o
where for a finite-dimensional complex linear space L we denote its dual (or antidual)
space by L'\ i^,i^ are natural inclusion maps and p^p^ are defined as follows:

(p )̂(s) = (u, s), u e r(x, £;), s e L-; (p/./)(t) = (/, <), / e r(x, F), < e £- .

The maps p^,p^ are surjective since the dual maps L~ -+ Z?'(X,JE7*), £~ -+ 'D'(X,F*)
are just canonical injections. Hence the rows are exact and we find

ind A^ = ind A - ind (A*)7 = ind A - (l~ - l~) .

Now using (3.2) and (3.3)we obtain

ind A = ind A + (l^ - ̂ +) - (F - l~) = ind A + deg^(ju). D

Remark 3.2. Lemma 3.1 means that

(3-4) dim Ker A = ind A + deg^ (p) + dim Coker A ,

so to prove Theorem 2.5 it suffices to prove the equality (ii) in Theorem 2.10. But it is not
easy to do it directly since no Hilbert space duality technique is available for the spaces
involved. So actually Theorems 2.5 and 2.10 will be proved simultaneously.

Now we need the following abstract Lemma from [G-S] which we reproduce with the
proof for the sake of completeness:
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Lemma 3.3. Let (•,•) : H x H' --^ C be a non-degenerated bilinear (or sesquilinear)
pairing between two complex linear spaces H^H1. Let L be a linear subspace in H', L° its
annulator in H and (L°)° the annulator of L° in H'. Then

(3.5) L C (L0)0

and

(3.6) codim L> dim L°.

Furthermore if F is a linear subspace in H' then

(3.7) codim F°= dim F.

Proof. The inclusion (3.5) is obvious. It follows that codim L > codim(L°)°. Hence
(3.7) implies (3.6) and we have only to prove (3.7). Clearly codim F° < dim F, so it
remains to prove that

codim F° > dim F .

It is sufficient to do it in the case when dim F < oo. Consider then the natural map
j : F —^ (7^/jF10)', where L/ means the space of all complex linear (or antilinear) maps of
Lto C,

j(/)(o:+F°)=(/^), x e H .

Then j is injective due to the non-degeneracy of the pairing. Hence

codim F° = dim n/F° = dim (7^/F0)' > dim F

as required. D

Lemma 3.4. In the pairing (2.4)

(ImA)°=KerA* .

Proof. Clearly

KerA^-HverpC,/^1^), A*t;=0 on X - (^+ UJ9-)} .

Lemma 3.4 follows because ImA contains all sections Au with u e T{X^E} and supp^ C
X-^UD-). D

Proof of Theorems 2.5 and 2.10. Due to Lemmas 3.3 and 3.4 we have

(3.8) ImAc(KerA*)°,
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(3.9) codimImA ^ dim KerA* .

and we have to prove that both these inclusion and inequality are actually equalities.
Furthermore (3.7) gives that

codim(KerA*)° = dim KerA* ,

hence equality in (3.9) implies equality in (3.8). Since codimImA == dim CokerA we have
only to prove that

(3.10) dim Coker A = dim Ker A*

which will immediately give us the proof of Theorems 2.5 and 2.10 due to (3.4). Clearly
(3.9) and (3.4) imply

(3.11) dim Ker A = ind A + deg^ (/x) + dim Coker A > ind A + deg^ (/i) + dim Ker A* .

But now we can_ apply the same results to the divisor p,~1 (instead of p) and the operator
A* (instead of A). Then we obtain

dim KerA" > indA* + deg^.(^~1) + dim KerA = -indA - deg^(^) + dim KerA .

But this is the opposite inequality to (3.11), hence we actually have equalities in (3.11)
and (3.10). Thus the proofs of Theorems 2.5 and 2.10 are completed. D

Proof of Theorem 2.11. The idea is to use Theorem 2.10 (i). Suppose that we are
given / e C°°(U, F), where U is a neighbourhood of P, and (/, L) = 0. We want to Hnd
u e C°°{U\, E) in another (possibly smaller) neighbourhood U\ of D, so that Au = f in U\.
Using a cut-off C'°°-function supported in U and equal 1 in another smaller neighbourhood
of D we can supppose that / 6 C°°(X, F).

Now let us consider a rigged divisor /A = (0,0; D, L) i.e. we take

D+ = 0, L-1- = 0, D~ =D, L~ = L,

so no singularities are allowed for the sections in F(X, p,, A) but the orthogonality conditions
are imposed on D. Let us consider the operator A and try to solve the equation Au = f
where / is an extension of / from a neighbourhood of D to a section in F(X, F) (which
will be automatically in r^(X, A) because (/, £) = 0). We want this extension to satisfy
the orthogonality condition (/,KerA*) == 0 to apply Theorem 2.10.

Denote

No{X, F) = {g\ g e C°°{X, F) , g = 0 in a neighbourhood of D} .

Then we have to find g e No{X, F) such that / - g e (KerA*)0 (hence / - g will be the
desired modified section). Consider the natural map

j : r/,(X,A) -^ (KerA*)', j(/)(u) = (/,v).
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We want to prove that j(f) e J(ND{X,F)). But actually j : No{X,F) -. (KerA*)' is
surjective because of the obvious injectivity of the dual map / : KerA* -^ (ND(X,F)V
which is defined similarly to j, namely: f{v){f) = (v,/). The map f is injective because
KerA* C C°°(X-D,F*) and^p(X,F) includes all sections g € C°°{X,F) withsupp^ C
X-D. D

Proof of Corollary 2.12. First note that instead of considering the Laplacian on
R/1 we can consider the Laplacian on the flat torus T^ = IC^/NT^ (with large N) since
a neighbourhood of D can be considered as an open subset in this torus as well. Let us
introduce then a space L C ^'(T^) spanned by the distributions

E^1)101^^ J== l , . . . ^ .
H^i

Then the conditions (2.6) acquire the form (n, L) == 0 allowing an application of the
Theorem 2.11. So we have to check only that the "secondary" space L is trivial. By
definition

^-{^ep'cr71), A^€L}.
Obviously L belongs to the dual space to C1^). By the standard Sobolev embedding
theorems C^T71) D Jf^/P+^P^) for any p > 1 and any 5 > 0. (See e.g. [St] or [Tr]).
But L obviously belongs to the dual space to C^r71). Hence L is in the dual space to
^•i+n/p+€,p(yn) ^at is in H^-^P'^ (T^) where l/p+ \/p1 = 1 (let us suppose that
n/p+e is not an integer). But then the standard regularity results for the equation A^ = /
imply^that L C H1-^^^). Taking p sufficiently large (so that 1 - n/p > 0) we see
that L C L? (7^1) then. Therefore L = 0 because all distributions from L are supported
on a set of the Lebesgue measure 0. D
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