@incollection{JEDP_1985___1_A5_0, author = {Mitsuru Ikawa}, title = {On the poles of the scattering matrix for two convex obstacles}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {5}, pages = {1--14}, publisher = {\'Ecole polytechnique}, number = {1}, year = {1985}, doi = {10.5802/jedp.297}, zbl = {0587.35057}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.297/} }
TY - JOUR AU - Mitsuru Ikawa TI - On the poles of the scattering matrix for two convex obstacles JO - Journées équations aux dérivées partielles PY - 1985 SP - 1 EP - 14 IS - 1 PB - École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.297/ DO - 10.5802/jedp.297 LA - en ID - JEDP_1985___1_A5_0 ER -
%0 Journal Article %A Mitsuru Ikawa %T On the poles of the scattering matrix for two convex obstacles %J Journées équations aux dérivées partielles %D 1985 %P 1-14 %N 1 %I École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.297/ %R 10.5802/jedp.297 %G en %F JEDP_1985___1_A5_0
Mitsuru Ikawa. On the poles of the scattering matrix for two convex obstacles. Journées équations aux dérivées partielles, no. 1 (1985), article no. 5, 14 p. doi : 10.5802/jedp.297. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.297/
[1] La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion, Comm. Partial Diff. Equ., (1982), 905-958. | MR | Zbl
, and ,[2] Decay of solutions of the wave equation in the exterior of two convex obstacles, Osaka J. Math., 19 (1982), 459-509. | MR | Zbl
,[3] On the poles of the scattering matrix for two strictly convex obstacles, J. Math. Kyoto Univ., 23 (1983), 127-194. | MR | Zbl
,[4] On the poles of the scattering matrix for two strictly convex obstacles : Addendum, J. Math. Kyoto Univ., 23 (1983), 795-802. | Zbl
,[5] Trapping obstacles with a sequence of poles of the scattering matrix converging to the real axis, to appear in Osaka J. Math. | Zbl
,[6] Precise informations on the poles of the scattering matrix for two strictly convex obstacles, in preparation. | Zbl
,[7] Scattering theory, Academic Press, New York, (1967). | Zbl
and ,[8] A logarithmic bound on the location of the scattering matrix, Arch. Rat. Mech. and Anal., 40 (1971), 268-280. | MR | Zbl
and ,[9]
, to appear.[10] Polynomial bound on the distribution of poles in scattering by obstacles, Journées " Equations aux dérivées partielles ", Soc. Math. France, (1984). | Numdam | Zbl
,[11] Propriétés génériques des rayons réfléchissants et applications aux problèmes spectraux, Séminaire Bony-Sjöstrand-Meyer, 1984-1985, Exposé n° XII. | Numdam | Zbl
,[12] Periods of multiple reflecting geodesics and inverse spectral problems, preprint. | Zbl
and ,Cité par Sources :