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CONFERENCE N° V

ON THE POLES OF THE SCATTERING MATRIX

FOR TWO CONVEX OBSTACLES

by Mitsuru IKAWA

$1. Introduction.

Let (@ be a bounded open set in R> with smooth boundary TI'. We

set Q = R3 - E; . Suppose that @ is connected. Consider the

following acoustic problem

2
[Qu(x,t) = 9 ? - Au =0 in Qx (-, «)
(1.1) ot
U.(X,t) =0 on I‘x(_oo’ oo)
3
where A =_Z132//%x 2 . Denote by .§(z) the scattering matrix for
4= 3

this problem. About the defintion of the scattering matrix, see

for example Lax and Phillips[7,page 9]. The result I like to

talk about is the following

Theorem 1. Let ¢9;, j=1,2, be open and strictly convex sets
in R” with smooth boundary Fj’ that is, the Gaussian curvature
of Ty is positive everywhere on I'y. Suppose that O, n o, =s.

Then the scattering matrix 8(z) for
O=0,n0,
satisfies the following:

(1) There exist positive constant o and c, such that ,g(z)

1
is holomorphic in



(o]
{z; Im z < cq cl} - U Dj

j=-oo
where
D, = {z; |z - zjlsc(1+|j|)‘l/2},
= o = g4
zy = ic, + g3, d=dis( G ., 66).

(2) For large |j|, every Dj contains exactly one pole of ag(z).
(3) Denoting the pole in Dj by ;j we have an asymptotic expan-
sion

-1 -2 .
(1.2) Ty o~ Zg F ByITT 4 By 4 e for [j[—> o

where Bl, 32,..... are complex constants determined by G .

(4) In Dj 2(z) is of the form

= —1
(1.3) B@z)f = =3 (£, )my + gfj(z)f

for all feL?(s?), where mi, Uy € 12 (s®) such that m#0, ¥,70

and (¢,¢) stands for the scalar product in L2(Sz), and }fj(z) is

an O‘C(Lz(sz),Lz(Sz))ll valued holomorphic function in Dj'

Concerning the existence of non-purely imaginary poles of
48(2), Bardos, Guillot and Ralston[l] proved under the same as-
sumption as ours the existence of an infinite number of the poles
in

{z; Im z € elog(l+]|z])}
for any €>0. This result is generalized by Petkov[1ll] and Petkov

and Stojanov[l2] to a case of many strictly convex obstacles. For

non-strictly convex obstacles Ikawa[5] showed an example of two

1) We denote by J(E,F) the set of all linear bounded mappings
from E into F.



convex obstacles whose scattering matrix has a sequence of the
poles converging to the real axis. On the other hand Lebeau[9]
considered the distribution of poles for one strictly convex

obstacle.

§2. Reduction of the problem.

Consider a boundary value problem with a parameter uec

(u2 - AMu(x) =0 in @
(2.1)
u(x) = g(x) on T
for ge c”(r). For Reuy» 0 (2.1) has a solution u uniquely in

f\on(Q). We denote the solution by U(u)g. Then U(u) is hol-
m>
omorphic in Rep >0 as an Jﬁ(cm(F),Cm(ﬁ))—valued functon. We shall

show the following theorems on U (u).

Theorem 2.1. (i) U(un) is prolonged analytically as an

Z(c”(r),c” @))-valued function into

oo

{Reu Z —co—cl} - j::; iDj.

(ii) Set for keR

= {pec€; |u+ik|< c +c 1y

0tC1r Reu -cy=(log (1+|k|)) "~

Gy

Then for large |k|, U(u) is represented in Gk N {Rey > 0} as

(2.2) v = —BEKW ey 4 vk, .
P (n) =y (k,u)
Here
(a) B(e,k,u) is C"(Q)-valued holomorphic function in Gy -
2du

(b) P(u) =1 -AXe” , 0< ), X<1.



(c) For any N positive integer
-9 ..\ h -N
|y e feen enen tsh K ORI < Cylk]

where Y, p are complex constants.
’

(d) F(k,u) is an ;t(Lz(F),C)-valued holomorphic function in Gk.
(f£) v(k,u) is an ;[(Cm(F),Cm(ﬁ))—valued holomorphic function
in Gk’

Corollary. U(u) is prolonged analytically as .L(cw(r),cw(ﬁ))

valued function into

J (G - {u: P)-v(k,u)=0}).
|k|:1large

Theorem 2.2. Suppose that € Gy and P u)-v(k,n)=0 for |k|

large.Then we have

dim{u; p-outgoing solution of (2.1) for g=0} = 1.

Note that the zeros of P (u)=0 are {izj, j=0,+1,+2,++++-} and

S (PG = v (k) >a - clk| L.

iy |
u 1zj
.
d

in iDj and it is simple. Denote it by iCj and we see that Cj has

By setting k=-2-j we have that @P(u)-y(k,u)=0 has only one zero
an asymptotic expansion (1.2).

Theorem 1 is immediately derived from Theorems 2.1 and 2.2 if
we recall the relationships between S(z) and U(y) shown in Lax
and Phillips[7], especially Theorem 5.1 of Chapter V, which says
that -£(z) has a pole at exactly those points z such that u=iz

is a pole of U(u).



§3. Sketch of the proofs of Theorems 2.1 and 2.2.

3.1. Asymptotic solutions for oscillatory boundary data.

Let ajEIﬁ be the points verifying

Ial - a2| = dis( Cﬁj CE).
Denote by Sj(é) for § >0 a connected component containing aj of
Sj N {x; dis(x,L) = &}

where L is a straight line passing a, and ays and denote by w(9§)
a domain surrounded by {x;dis(x,L)=8} and Sj(d), j=1,2. Let
Uk(x) be a smooth function satisfying

1 for }<esl(k'€)

v, (x) =
k 0 for x &S, ((1+8)k™°)

for some §> 0, €> 0 small constants. Let h(t)ecm(o,d/2)

satisfying h(t) 20 and [h(t)dt = 1. Set

_ ik () -t)

(3.1) m(x,t;k) w(x)h(t-j (%))

wherewpe(fWSl(Go)) is a real valued function satisfying some

conditions and j(x) a fixed smooth function determined by .

We construct a sequence of functions of the form

ik (P, (x)-t) N
L

(3.2) ug (x,£5k) = e v.’q(x,t;k)(ik)-j.

j=0

(1) Eﬂq, g=0,1, »»+ are determined successively by
Ve, =1 in  ©(6)

Py =V and 3%,/3n> 0 on s, (8),



|vgl| =1 on w(§)
91 = 90 and a?l/an >0 ons,(8),

|V9>2| =1 on w($)

g>2 = g>l and a?z/an >0 on S, (8),

L]
.
.

.

(II) On amplitude functions.
Set

9
T = 2-—/— + 2V oV + A .

Vo q’ gq=0,1,2, » - -- are defined successively by
’
TOVO’0 = 0 in w(S) xR
VO,O = f(x,t) on I‘l><IR

where f(x,t)=w(x)h(t-j(x)), and for p2>1

T2p-lV0,2p-1 =0 in w(§) xR
Vo,2p-1 = Vo,2p-2 on TR,
T2pV0,2p =0 in  w(§) xR
V0,2p = Uk(X)VO,Zp-l on I"lxR.

Next for j21, vj q’ q=0,1,2,--+ are defined successively for
14

all p>0 by

{T2p"3,20 = H1V5-1,2p i w(8)xk

~Vj,2p =0 on PlXR,
Tap+1Vy,2p+1 = O Vyo1,0p41 10 @(O)R

<

V3,2p41 T Yy, 2p on T



On the asymptotic behavior of g&, vj q for g—> 00, we have the
14

following Lemmas.

Lemma 3.1. It holds that

- 2p
| Pop = (9.* 2dp + d)) | € Cpo
- (& 2p
| Popr1 = (Fot (2p+l)d + 4| < C o

where ¢ _, @ _ are functions independent of ¥, and they verify

Ive | =1 in  w(8) and 9(a;)=0,

|v§w| 1 in  w(8) and @(a2)=0,

and do is a constant depending on ¥, o is a positive constant € 1.

Lemma 3.2. It holds that

. - "/p - _. — L]
Ivjlzp(x,t,k) bw (A) (A7) vj’oo(x,t 2pd-j (A) dm,k)lm

¥y P
< Cj’m(akk) Mm+2j,

|v.

. - NP ~ _ . _ .
],2p+l(x,t,k) bw (A) (A)X) vj'm(x,t 2pd-7j (A) dw'k)lm

~
P
< C.'m(akX) Mm

= 3] +23,

where A,‘X are constants determined by 0" such that 0<.A,'f<:l,

M, = kr oz sup !Di c |,
|B] <2 TR '
v. and $< are functions of the form
Ji® Jr®
v (x,t;k) = %j a (x k)h(g)(t—'(x))
-,oo r’ r ’.=° j,/Q/ ’ 3 14

J
~
V.

J

7., x0T,

,oo(X't;k) j'Q/

z
i=0
and b is a constant depending on Y, A is a point in 51(6) depend-

ing on V.



Remark that we have

ik (P _-t)

E]uq = e q (ik) N

N,qg’

Next we construct by a usual method asymptotic solutions for

Du=20 in wXR
(3.3)
u = (l-Uk(x))uzp(x,t;k) on P1XR
3 3 )
Denote the asymptotic solution by uzp. Extend [](u2p+uép) and

Eju2p+l by a fixed manner into (% so that these are smooth in

R%(R, and de note by ug the solution of

3

]
u = - u_+u in R™xR
O Of q q)
u=20 for t<£0
where we set uép+l=0. By taking account of the continuity from

uq to ué and u& we have a Lemma of the type Lemma 3.2 on the

convergence of ué and ua. Set

r =u_+u' + u"
a q q q

and we have

Lemma 3.3. It holds that

|r)p (Retik) - bw (a) e~ 1K (3 (R)+d,) Jikdg (,5)P

. o~ m+l
+ r,, (x,t-2pd-3 (A)-d_;k) | < cm(au)p k

~

|2pper (rtik) = bwme I (RI3A) ikdg )

m+1

’

~
- ¥, (x,t-2pd-3 (B)-d_;k) | < C_(axD)® k

where r_, ?; are functions independent of ¥ and w.



Set
> q
rix,t;k) = ¥ (-1)°* r (x,t;k).

%'—"D q

Evidently it holds that
Or =0 in QxXR.

We consider the Laplace transformation of r in t, that is,
(3.4) Lx, k) = e " (x,tik)at.
We have from Lemma 3.3 the following

Proposition 3.4. Let Reu> 0. Then (3.4) converges and we

have a representation of ?(x,u;k)

(3.5)  T(x,u;k)

-(3(A)+d,) (u+ik) 1

= bw(A)e e**%0 o)7L x5k + s(x,uik),

A . , . . .
where r_(x,u;k) is an entire function in u independent of ¥ and
w, and @Yx,u;k) is holomorphic in Reu > ~Cy~Cq- Moreover we have

on Pl

Dix,uik) - e (WFIK)II () 1KV (x) oD (Ltik)

L oikdg oy (ay o™ (3 (B)+dw) (ukik)

(x) T % (x) (ik) "3

k 1€)$N oshsN

aj’h

1

i) P Rurin) + ap Gk} PO T ¥ e (xuik),

and on P2

ikdg L pu@a)e

P

where aj h(x) are smooth functions on Sl(é), a, and a, are entire
14

functions independent of y and w having an estimate

= (] (A) +do) (p+ik)

’f(x,p;k)=e az(xlklU) + ez(xrklU)r

-N
sup a.(xku)lsc k
x‘% J e N,RI I



10

and e, and e, are holomorphic in Reu)»-co-cl and satisfy

|k|_1 on Sl((l+6)|k|~1)
|eq ik im|¢

XI™  on TyNs (1) [x]7h,
Iez(x,k,uﬂ < |k| N on T,.

3.2. Reduction to an integral equation on T

Suppose that [, is represented as x(o)=(0,,0,,X,(0,,0,)) near
1l 1772737172

a Let g(x)ec‘g(sl(ao)). Then

lt

(2m) "2 [e1*¥%" & 5 (ke)k2aE

g(x (o))

2

(2m) "2 wix(o)) [e X9 85 (ke)k2ac

I

where w(x) ecg(sl(ZGO)) such that w(x)=1 on Sl(Go), and
5E) = [e 1% 8g(x(0))do.

If we define ﬁl(k,u) an operator from Lz(sl(éo)) into ¢ (d) by
(@ Gwe) ) = (2m 72 fulx,£:k, w8 (ke)k2aE

where u(x,&;:;k,u) denotes ?(x,u,k)/ﬁ(u+ik) constructed for ¢ (x(o))
=0+¢. Then we have from Proposition 3.4

Proposition 3.5. ﬁl(k,u) is of the form

. T, (x,u5k)
(3.6) Ul(k.u)g = _W Fo(k,u)g + S(k,u)g

where
(3.7) F0 (k,w)g =(2ﬂ)—2 fb(i)W(A(E) )e"(j (A(E))+d, (&)) (u+ik)

.eikdo(E) GYkE)ksz,



11

S(k,u) is ;ﬁ(Lz(Sl(SO)),Cw (%) ) -valued holomorphic function in

Reyu > =Cy~Cy- Moreover it holds that

(3.8) (2 - 0T g =0 in o,
=~ - a(x,k,un)
(3.9) Ulg - - —_— FO(kIU)g - E(klU)g on Fl
P (n)
(3.10) ﬁlg = ;gifLELﬂl Fo(k,u)g + E(k,u)g on F2,
Puw)
(3.11)  Ja(x,k,WFyk,wgl € k™ Hallz2 )
(3.12)  JE&,wglle gy € k™ flglipe p,,,

~ -N
(3.13) [T,k Fy kgl € Clkl 7 Jaligz (p,y o
-N
(3.14)  EG,wmallgep,y € Clkl™ lglyz ()
Note that the solution U2h of
2 . av———
j(u - Mu =0 in R’ - C?é
1 u =h on T
is continued into {u;Reu =-a log(|u|+1)} for some a>0. Then
~ ~
u, (k,uw)g = Uy (k,u)g - Uz(u)(Ul(k,u)glrz)

is also of the form (3.6) and satisfies (3.8), (3.9), (3.11) and
(3.12), and

(3.10)° Ul(k,u)g =0 on T
Remark. We can extend the definition of Ul(k,u) for any £

€2L2(Fl) by using the argument in §8 of [2]. Hereafter we denote

by Ul the extended one.



12

3.3. Representation of U(y).

Lemma 3.6. Let H and E be linear operators with ||H|,IEll<1/2.

Then we have

-1 _
(I -H=-E) ~=1I+ z:l+ €,

where
T, =M+ ME+MEMR + HEME +---.
F,=E+ER+ ERE+EREN+ -
E-e+e?+ed+ ...,
M=H+H2+H3+-...
Pose
H(k, g = 2EEW) g oo g,
P (n)

An application of the above lemma gives

1

(3.15) (I -H=-E) "= (I+E) (B Fo(I +&)

Plu) -y

where

y(k,u) = Fo(krU) ((I+ z(krU))OL('rkrU))-
Evidently we have in Reu> 0
(3.16) UG = Uy (k) (I-H(k,u)-E (k1) L.

Then a substitution of (3.15) into (3.16) gives

r (x,k,u)
U(u) = P (0 —y (K, 1) Fo(k,u) (I+ Ek,u)) + s(k,n) (I+ E(k,u)).

By posing

F(k,p) = Fy(k,n) (I+ Bk,u)),



13

V(klU) = S(kI]J) (I + E(klu))l

we have a representation (2.2).
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