@incollection{JEDP_1983____A2_0, author = {Nicolas Lerner}, title = {Unicit\'e de {Cauchy} pour des op\'erateurs faiblement principalement normaux}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {2}, pages = {1--7}, publisher = {\'Ecole polytechnique}, year = {1983}, zbl = {0523.35002}, mrnumber = {86j:35006}, language = {fr}, url = {https://proceedings.centre-mersenne.org/item/JEDP_1983____A2_0/} }
TY - JOUR AU - Nicolas Lerner TI - Unicité de Cauchy pour des opérateurs faiblement principalement normaux JO - Journées équations aux dérivées partielles PY - 1983 SP - 1 EP - 7 PB - École polytechnique UR - https://proceedings.centre-mersenne.org/item/JEDP_1983____A2_0/ LA - fr ID - JEDP_1983____A2_0 ER -
Nicolas Lerner. Unicité de Cauchy pour des opérateurs faiblement principalement normaux. Journées équations aux dérivées partielles (1983), article no. 2, 7 p. https://proceedings.centre-mersenne.org/item/JEDP_1983____A2_0/
[1] : Y. Egorov : “On thesolvability of differential equations with simple characteristics”. Russian Math. Surveys 26 (1971), p. 113-127. | Zbl
[2] : C. Fefferman - D.H. Phong : “On positivity of pseudo-differential operators”. Proc. Math. Acad. Sci. U.S.A., 75 (1978), p. 4673-4674. | MR | Zbl
[3] : L. Hörmander : "Linear partial differential operators". Springer Verlag (1963). | Zbl
[4] : L. Hörmander : “Pseudo-differential operators and non elliptic boundary problems”. Ann. of Math. 83 (1966), p. 129-209. | MR | Zbl
[5] : L. Nirenberg - F. Trekes : “On local solvability of linear partial differential equations”. Part. I, Necessary conditions, C.P.A.M. 23, 1970, p. 1-38. Part. II, Sufficient conditions, C.P.A.M. 23, p. 459-510. | MR | Zbl
[6] : M. Strauss - F. Treves : “First order linear p de s' and uniqueness of the Cauchy problem”. Journ. of diff. equations, 15 (1974), p. 195-209. | MR | Zbl
[7] : F. Treves : “A linb between solvability of pseudo-differential equations and uniqueness of the Cauchy problem”. Amer. Journ. of Math. 94 (1972), p. 267-288. | MR | Zbl