@incollection{JEDP_1983____A14_0,
author = {Paul Godin},
title = {Le probl\`eme de la d\'eriv\'ee oblique non lin\'eaire},
booktitle = {},
series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
eid = {14},
pages = {1--7},
year = {1983},
publisher = {\'Ecole polytechnique},
doi = {10.5802/jedp.278},
zbl = {0534.35020},
language = {fr},
url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.278/}
}
TY - JOUR AU - Paul Godin TI - Le problème de la dérivée oblique non linéaire JO - Journées équations aux dérivées partielles PY - 1983 SP - 1 EP - 7 PB - École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.278/ DO - 10.5802/jedp.278 LA - fr ID - JEDP_1983____A14_0 ER -
Paul Godin. Le problème de la dérivée oblique non linéaire. Journées équations aux dérivées partielles (1983), article no. 14, 7 p.. doi: 10.5802/jedp.278
[1] , , : Estimates near the boundary for solutions of elliptic partail differential equations satisfying general boundary conditions I. Comm. Pure Appl. Math. 12 (1959), 623-727. | MR | Zbl
[2] : Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Scient. Ec. Norm. Sup. 4e série, 14 (1981), 209-246. | Numdam | MR | Zbl
[3] et : The oblique derivative problem. Math. USSR. Sb. 7 (1969), 139-169. | Zbl
[4] : Subelliptic non linear oblique derivative problems, à paraître dans Amer. J. Math. | Zbl
[5] : Singular solutions to non linear oblique derivative problems, en préparation. | Zbl
[6] : On the existence and the regularity of solutions of linear pseudo-différential equations. L'Ens. Math. 17 (1971), 99-163. | MR | Zbl
[7] : Subelliptic operators, dans : Seminar on singularities of solutions of linear partial differential equations, Annals of Math. Studies 91 (1979), 127-208. | MR | Zbl
[8] et : A calculus for Fourier integral operators in domains with boundary and applications to the oblique derivative problem, Comm. Part. Diff. Eq. 2, 9 (1977), 857-935. | MR | Zbl
[9] : The oblique derivative problem II. Ark. för Mat. 17 (1979), 107-122. | MR | Zbl
[10] : Generalized implicit function theorems with applications to some small divisor problems I. Comm. Pure Appl. Math. 28 (1975), 91-140. | MR | Zbl
Cité par Sources :

