@incollection{JEDP_1977____9_0,
author = {Mohamed S. Baouendi and E. C. Zachmanoglou},
title = {Unique continuation theorems for solutions of partial differential equations and inequalities},
booktitle = {},
series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
pages = {9--15},
year = {1977},
publisher = {\'Ecole polytechnique},
doi = {10.5802/jedp.152},
language = {en},
url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.152/}
}
TY - JOUR AU - Mohamed S. Baouendi AU - E. C. Zachmanoglou TI - Unique continuation theorems for solutions of partial differential equations and inequalities JO - Journées équations aux dérivées partielles PY - 1977 SP - 9 EP - 15 PB - École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.152/ DO - 10.5802/jedp.152 LA - en ID - JEDP_1977____9_0 ER -
%0 Journal Article %A Mohamed S. Baouendi %A E. C. Zachmanoglou %T Unique continuation theorems for solutions of partial differential equations and inequalities %J Journées équations aux dérivées partielles %D 1977 %P 9-15 %I École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.152/ %R 10.5802/jedp.152 %G en %F JEDP_1977____9_0
Mohamed S. Baouendi; E. C. Zachmanoglou. Unique continuation theorems for solutions of partial differential equations and inequalities. Journées équations aux dérivées partielles (1977), pp. 9-15. doi: 10.5802/jedp.152
1. and , Unique Continuation of solutions of partial differential equations and inequalities from manifolds of any dimension, to appear. Duke Journal. | Zbl
2. , Über die Besstimmtheit der Lösungen elliptischer Differentialgleichungen durch Anfangsvorgaben, Nachr. Akad. Wiss. Göttingen IIa (1956), 230-258. | Zbl
3. , Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math. 24 (1971), 617-704. | MR | Zbl
4. , On linear partial differential equations with analytic coefficients, Comm. Pure Appl. Math. 2 (1949), 209-253. | MR | Zbl
5. , Unique continuation for elliptic equations, Trans. AMS 95 (1960), 81-91. | MR | Zbl
Cité par Sources :

