De manière surprenante, les idées issues de l’analyse topologique des données, et la théorie de la persistance en particulier, ont eu des applications très récentes en mathématiques fondamentales. Nous en verrons deux. L’une concerne la dynamique des transformations d’une surface qui préservent l’aire, et l’autre la géométrie des domaines nodaux, c’est-à-dire des ensembles délimités par les zéros des fonctions propres du laplacien.
@incollection{XUPS_2024____75_0, author = {Vincent Humili\`ere}, title = {Applications de la th\'eorie de~la~persistance en g\'eom\'etrie}, booktitle = {Analyse topologique de donn\'ees}, series = {Journ\'ees math\'ematiques X-UPS}, pages = {75--90}, publisher = {Les \'Editions de l{\textquoteright}\'Ecole polytechnique}, year = {2024}, doi = {10.5802/xups.2024-05}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/xups.2024-05/} }
TY - JOUR AU - Vincent Humilière TI - Applications de la théorie de la persistance en géométrie JO - Journées mathématiques X-UPS PY - 2024 SP - 75 EP - 90 PB - Les Éditions de l’École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/xups.2024-05/ DO - 10.5802/xups.2024-05 LA - fr ID - XUPS_2024____75_0 ER -
%0 Journal Article %A Vincent Humilière %T Applications de la théorie de la persistance en géométrie %J Journées mathématiques X-UPS %D 2024 %P 75-90 %I Les Éditions de l’École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/xups.2024-05/ %R 10.5802/xups.2024-05 %G fr %F XUPS_2024____75_0
Vincent Humilière. Applications de la théorie de la persistance en géométrie. Journées mathématiques X-UPS, Analyse topologique de données (2024), pp. 75-90. doi : 10.5802/xups.2024-05. https://proceedings.centre-mersenne.org/articles/10.5802/xups.2024-05/
[Bar94] S. A. Barannikov The framed Morse complex and its invariants, Singularities and bifurcations (Adv. Soviet Math.), Volume 21, American Mathematical Society, Providence, RI, 1994, pp. 93-115 | DOI | MR | Zbl
[BLS20] L. Buhovsky; A. Logunov; M. Sodin Eigenfunctions with infinitely many isolated critical points, Internat. Math. Res. Notices (2020) no. 24, pp. 10100-10113 | DOI | MR | Zbl
[BPP + 22] L. Buhovsky; J. Payette; I. Polterovich; L. Polterovich; E. Shelukhin; V. Stojisavljević Coarse nodal count and topological persistence, 2022 | arXiv
[Car24] M. Carrière Théorie de la persistance (2/2) : stabilité, Analyse topologique de données (Journées X-UPS), Les Éditions de l’École polytechnique, Palaiseau, 2024 (ce volume) | DOI
[CM23] A. Chor; M. Meiwes Hofer’s geometry and topological entropy, Compositio Math., Volume 159 (2023) no. 6, pp. 1250-1299 | DOI | MR | Zbl
[DH13] D. N. Dore; A. D. Hanlon Area preserving maps on : a lower bound on the -norm using symplectic spectral invariants, Electron. Res. Announc. Math. Sci., Volume 20 (2013), pp. 97-102 | DOI | MR | Zbl
[Fra96] J. Franks Area preserving homeomorphisms of open surfaces of genus zero, New York J. Math., Volume 2 (1996), pp. 1-19 http://nyjm.albany.edu:8000/j/1996/2_1.html | MR | Zbl
[LMP23] M. Levitin; D. Mangoubi; I. Polterovich Topics in spectral geometry, Graduate Studies in Math., 237, American Mathematical Society, Providence, RI, 2023 | DOI | MR
[LPNV13] D. Le Peutrec; F. Nier; C. Viterbo Precise Arrhenius law for -forms : the Witten Laplacian and Morse-Barannikov complex, Ann. Henri Poincaré, Volume 14 (2013) no. 3, pp. 567-610 | DOI | MR | Zbl
[LRSV21] F. Le Roux; S. Seyfaddini; C Viterbo Barcodes and area-preserving homeomorphisms, Geom. Topol., Volume 25 (2021) no. 6, pp. 2713-2825 | DOI | MR | Zbl
[Mil64] J. W. Milnor On the Betti numbers of real varieties, Proc. Amer. Math. Soc., Volume 15 (1964), pp. 275-280 | DOI | MR | Zbl
[Oud24] S. Oudot Théorie de la persistance (1/2) : structure, Analyse topologique de données (Journées X-UPS), Les Éditions de l’École polytechnique, Palaiseau, 2024 (ce volume) | DOI
[PS07] L. Polterovich; M. Sodin Nodal inequalities on surfaces, Math. Proc. Cambridge Philos. Soc., Volume 143 (2007) no. 2, pp. 459-467 | DOI | MR | Zbl
[PS16] L. Polterovich; E. Shelukhin Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules, Selecta Math. (N.S.), Volume 22 (2016) no. 1, pp. 227-296 | DOI | MR | Zbl
[Sey13] S. Seyfaddini The displaced disks problem via symplectic topology, Comptes Rendus Mathématique, Volume 351 (2013) no. 21-22, pp. 841-843 | DOI | Numdam | MR | Zbl
[She22] E. Shelukhin On the Hofer-Zehnder conjecture, Ann. of Math. (2), Volume 195 (2022) no. 3, pp. 775-839 | DOI | MR | Zbl
[Ush11] M. Usher Boundary depth in Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds, Israel J. Math., Volume 184 (2011), pp. 1-57 | DOI | MR | Zbl
[Vir79] O. Ja. Viro Construction of multicomponent real algebraic surfaces, Dokl. Akad. Nauk SSSR, Volume 248 (1979) no. 2, pp. 279-282 | MR
[Vit92] C. Viterbo Symplectic topology as the geometry of generating functions, Math. Ann., Volume 292 (1992) no. 4, pp. 685-710 | DOI | MR | Zbl
[Yom85] Y. Yomdin Global bounds for the Betti numbers of regular fibers of differentiable mappings, Topology, Volume 24 (1985) no. 2, pp. 145-152 | DOI | MR | Zbl
Cité par Sources :