Siegel a introduit en 1929 les - et -fonctions, deux classes de séries entières à coefficients algébriques qui sont solutions d’équations différentielles à coefficients polynomiaux dans le but de généraliser les théorèmes classiques d’Hermite, Lindemann et Weierstrass concernant la nature arithmétique des valeurs des fonctions exponentielle et logarithme aux points algébriques, que ces deux classes généralisent respectivement.
Une première partie introduit la théorie des approximants de Padé « explicites » et la combine avec des méthodes « inexplicites » pour aboutir au célèbre résultat (1956) de Siegel et Shidlovskii sur la nature arithmétique des valeurs de -fonctions. On indique ensuite comment Chudnovsky a complété en 1984 le programme de Siegel sur la nature diophantienne des -fonctions. Une deuxième partie aborde la nature des équations différentielles satisfaites par les -fonctions (travaux d’André, Chudnovsky et Katz) puis, par ricochet, par les -fonctions. On conclut par de nouvelles applications arithmétiques que l’on en déduit et qui complètent le théorème de Siegel-Shidlovskii (travaux d’André, Beukers, Adamczewski-Rivoal).
@incollection{XUPS_2019____197_0, author = {Tanguy Rivoal}, title = {Les $E$-fonctions et $G$-fonctions {de~Siegel}}, booktitle = {P\'eriodes et transcendance}, series = {Journ\'ees math\'ematiques X-UPS}, pages = {197--298}, publisher = {Les \'Editions de l{\textquoteright}\'Ecole polytechnique}, year = {2019}, doi = {10.5802/xups.2019-03}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/xups.2019-03/} }
TY - JOUR AU - Tanguy Rivoal TI - Les $E$-fonctions et $G$-fonctions de Siegel JO - Journées mathématiques X-UPS PY - 2019 SP - 197 EP - 298 PB - Les Éditions de l’École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/xups.2019-03/ DO - 10.5802/xups.2019-03 LA - fr ID - XUPS_2019____197_0 ER -
%0 Journal Article %A Tanguy Rivoal %T Les $E$-fonctions et $G$-fonctions de Siegel %J Journées mathématiques X-UPS %D 2019 %P 197-298 %I Les Éditions de l’École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/xups.2019-03/ %R 10.5802/xups.2019-03 %G fr %F XUPS_2019____197_0
Tanguy Rivoal. Les $E$-fonctions et $G$-fonctions de Siegel. Journées mathématiques X-UPS, Périodes et transcendance (2019), pp. 197-298. doi : 10.5802/xups.2019-03. https://proceedings.centre-mersenne.org/articles/10.5802/xups.2019-03/
[1] Handbook of mathematical functions with formulas, graphs, and mathematical tables (Milton Abramowitz; Irene A. Stegun, eds.), Dover Publications, Inc., New York, 1992 | MR
[2] B. Adamczewski; T. Rivoal Exceptional values of -functions at algebraic points, Bull. London Math. Soc., Volume 50 (2018) no. 4, pp. 697-708 | DOI | MR | Zbl
[3] K. Alladi; M. L. Robinson Legendre polynomials and irrationality, J. reine angew. Math., Volume 318 (1980), pp. 137-155 | MR | Zbl
[4] Y. André -functions and geometry, Aspects of Mathematics, E13, Friedr. Vieweg & Sohn, Braunschweig, 1989 | DOI | MR
[5] Y. André -fonctions et transcendance, J. reine angew. Math., Volume 476 (1996), pp. 95-125 | DOI | MR | Zbl
[6] Y. André Séries Gevrey de type arithmétique. I. Théorèmes de pureté et de dualité, Ann. of Math. (2), Volume 151 (2000) no. 2, pp. 705-740 | DOI | MR | Zbl
[7] Y. André Séries Gevrey de type arithmétique. II. Transcendance sans transcendance, Ann. of Math. (2), Volume 151 (2000) no. 2, pp. 741-756 | DOI | MR | Zbl
[8] Y. André Arithmetic Gevrey series and transcendence. A survey, J. Théor. Nombres Bordeaux, Volume 15 (2003) no. 1, pp. 1-10 Les XXIIèmes Journées Arithmetiques (Lille, 2001) | DOI | Numdam | MR | Zbl
[9] Y. André Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas & Synthèses, 17, Société Mathématique de France, Paris, 2004 | MR
[10] Y. André Solution algebras of differential equations and quasi-homogeneous varieties : a new differential Galois correspondence, Ann. Sci. École Norm. Sup. (4), Volume 47 (2014) no. 2, pp. 449-467 | DOI | MR | Zbl
[11] R. Apéry Irrationalité de et , Journées arithmétiques de Luminy (Astérisque), Volume 61, Société Mathématique de France, Paris, 1979, pp. 11-13 | MR | Zbl
[12] R. Apéry Interpolation de fractions continues et irrationalité de certaines constantes, Mathematics (CTHS : Bull. Sec. Sci., III), Bibliothèque Nationale, Paris, 1981, pp. 37-53 | MR | Zbl
[13] A. Baker Transcendental number theory, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990 | MR
[14] K. Ball; T. Rivoal Irrationalité d’une infinité de valeurs de la fonction zêta aux entiers impairs, Invent. Math., Volume 146 (2001) no. 1, pp. 193-207 | DOI | MR | Zbl
[15] M. Bauer; M. A. Bennett Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation, Ramanujan J., Volume 6 (2002) no. 2, pp. 209-270 | DOI | MR | Zbl
[16] D. Bertrand On André’s proof of the Siegel-Shidlovsky theorem, Colloque Franco-Japonais : Théorie des Nombres Transcendants (Tokyo, 1998) (Sem. Math. Sci.), Volume 27, Keio University, Yokohama, 1999, pp. 51-63 | MR
[17] D. Bertrand; F. Beukers Équations différentielles linéaires et majorations de multiplicités, Ann. Sci. École Norm. Sup. (4), Volume 18 (1985) no. 1, pp. 181-192 | DOI | Numdam | MR | Zbl
[18] D. Bertrand; V. Chirskii; J. Yebbou Effective estimates for global relations on Euler-type series, Ann. Fac. Sci. Toulouse Math. (6), Volume 13 (2004) no. 2, pp. 241-260 http://afst.centre-mersenne.org/item?id=AFST_2004_6_13_2_241_0 | DOI | Numdam | MR | Zbl
[19] F. Beukers On the generalized Ramanujan-Nagell equation. I, Acta Arith., Volume 38 (1980/81) no. 4, pp. 389-410 | DOI | MR | Zbl
[20] F. Beukers Padé-approximations in number theory, Padé approximation and its applications (Amsterdam, 1980) (Lect. Notes in Math.), Volume 888, Springer, Berlin-New York, 1981, pp. 90-99 | MR | Zbl
[21] F. Beukers Algebraic values of -functions, J. reine angew. Math., Volume 434 (1993), pp. 45-65 | DOI | MR | Zbl
[22] F. Beukers A rational approach to , Nieuw Arch. Wisk., Volume 1 (2000) no. 4, pp. 372-379 | MR | Zbl
[23] F. Beukers A refined version of the Siegel-Shidlovskii theorem, Ann. of Math. (2), Volume 163 (2006) no. 1, pp. 369-379 | DOI | MR | Zbl
[24] F. Beukers -functions and -functions (2008) (disponible à http://swc.math.arizona.edu/aws/2008/08BeukersNotesDraft.pdf)
[25] F. Beukers Algebraic -hypergeometric functions, Invent. Math., Volume 180 (2010) no. 3, pp. 589-610 | DOI | MR | Zbl
[26] F. Beukers; G. Heckman Monodromy for the hypergeometric function , Invent. Math., Volume 95 (1989) no. 2, pp. 325-354 | DOI | MR | Zbl
[27] F. Beukers; C. A. M. Peters A family of surfaces and , J. reine angew. Math., Volume 351 (1984), pp. 42-54 | DOI | MR | Zbl
[28] E. Bombieri On -functions, Recent progress in analytic number theory, Vol. 2 (Durham, 1979), Academic Press, London-New York, 1981, pp. 1-67 | MR | Zbl
[29] A. Bostan Calcul formel pour la combinatoire des marches, Mémoire d’habilitation à diriger des recherches, Univ. Paris 13 (2017) (tel-01660300)
[30] A. Bostan; M. Kauers The complete generating function for Gessel walks is algebraic, Proc. Amer. Math. Soc., Volume 138 (2010) no. 9, pp. 3063-3078 | DOI | MR | Zbl
[31] A. Bostan; P. Lairez; B. Salvy Multiple binomial sums, J. Symbolic Comput., Volume 80 (2017) no. part 2, pp. 351-386 | DOI | MR | Zbl
[32] A. Bostan; T. Rivoal; B. Salvy Explicit degree bounds for right factors of linear differential operators, Bull. Lond. Math. Soc., Volume 53 (2021) no. 1, pp. 53-62 | DOI | MR | Zbl
[33] A. Bostan; T. Rivoal; B. Salvy Minimization of differential equations and algebraic values of -functions, Math. Comp., Volume 93 (2024) no. 347, pp. 1427-1472 | DOI | MR | Zbl
[34] C. Brezinski Padé-type approximation and general orthogonal polynomials, International Series of Numerical Math., 50, Birkhäuser Verlag, Basel-Boston, Mass., 1980, 250 pages | DOI | MR
[35] D. Broadhurst Feynman integrals, L-series and Kloosterman moments, Commun. Number Theory Phys., Volume 10 (2016) no. 3, pp. 527-569 | DOI | MR | Zbl
[36] G. Christol Fonctions hypergéométriques bornées, Groupe de travail d’analyse ultramétrique, Volume 14, Université de Paris VII, 1986/87 (Exp. 8)
[37] D. V. Chudnovsky; G. V. Chudnovsky Applications of Padé approximations to Diophantine inequalities in values of -functions, Number theory (New York, 1983–84) (Lect. Notes in Math.), Volume 1135, Springer, Berlin, 1985, pp. 9-51 | DOI | MR | Zbl
[38] G. V. Chudnovsky Algebraic independence of the values of elliptic function at algebraic points. Elliptic analogue of the Lindemann-Weierstrass theorem, Invent. Math., Volume 61 (1980) no. 3, pp. 267-290 | DOI | MR | Zbl
[39] G. V. Chudnovsky On applications of Diophantine approximations, Proc. Nat. Acad. Sci. U.S.A., Volume 81 (1984) no. 22, pp. 7261-7265 | DOI | MR | Zbl
[40] H. Cohn A short proof of the simple continued fraction expansion of , Amer. Math. Monthly, Volume 113 (2006) no. 1, pp. 57-62 | DOI | MR | Zbl
[41] L. Comtet Calcul pratique des coefficients de Taylor d’une fonction algébrique, Enseign. Math. (2), Volume 10 (1964), pp. 267-270 | Zbl
[42] J. B. Conway Functions of one complex variable, Graduate Texts in Math., 11, Springer-Verlag, New York-Berlin, 1978 | DOI | MR
[43] C. S. Davis Rational approximations to , J. Austral. Math. Soc. Ser. A, Volume 25 (1978) no. 4, pp. 497-502 | DOI | MR | Zbl
[44] P. Dèbes -fonctions et théorème d’irreductibilité de Hilbert, Acta Arith., Volume 47 (1986) no. 4, pp. 371-402 | DOI | MR | Zbl
[45] E. Delaygue Critère pour l’intégralité des coefficients de Taylor des applications miroir, J. reine angew. Math., Volume 662 (2012), pp. 205-252 | DOI | MR | Zbl
[46] E. Delaygue; T. Rivoal; J. Roques On Dwork’s -adic formal congruences theorem and hypergeometric mirror maps, Mem. Amer. Math. Soc., 246, no. 1163, American Mathematical Society, Providence, RI, 2017 | DOI | MR
[47] R. Descombes Éléments de théorie des nombres, Mathématiques, Presses Universitaires de France, Paris, 1986, 279 pages | MR
[48] L. Di Vizio Sur la théorie géométrique des -fonctions. Le théorème de Chudnovsky à plusieurs variables, Math. Ann., Volume 319 (2001) no. 1, pp. 181-213 | DOI | MR | Zbl
[49] B. Dwork On Apéry’s differential operator, Groupe de travail d’analyse ultramétrique, Volume 7-8, Université de Paris VII, 1979/81 (Exp. No. 25)
[50] B. Dwork Differential operators with nilpotent -curvature, Amer. J. Math., Volume 112 (1990) no. 5, pp. 749-786 | DOI | MR | Zbl
[51] B. Dwork; G. Gerotto; F. J. Sullivan An introduction to -functions, Annals of Math. Studies, 133, Princeton University Press, Princeton, NJ, 1994 | MR
[52] G. Eisenstein Über eine allgemeine Eigenschaft der Reihen-Entwicklungen aller algebraischen Funktionen, Bericht Königl. Preuss Akad. d. Wiss. zu Berlin (1852), pp. 411-444
[53] S. R. Finch Mathematical constants, Encyclopedia of Math. and its Applications, 94, Cambridge University Press, Cambridge, 2003 | MR
[54] S. Fischler Irrationalité de valeurs de zêta (d’après Apéry, Rivoal,...), Séminaire Bourbaki (Astérisque), Volume 294, Société Mathématique de France, Paris, 2004, pp. 27-62 | Zbl
[55] S. Fischler Nesterenko’s linear independence criterion for vectors, Monatsh. Math., Volume 177 (2015) no. 3, pp. 397-419 | DOI | MR | Zbl
[56] S. Fischler Linear independence of odd zeta values using Siegel’s lemma, 2021 | arXiv
[57] S. Fischler; T. Rivoal Approximants de Padé et séries hypergéométriques équilibrées, J. Math. Pures Appl. (9), Volume 82 (2003) no. 10, pp. 1369-1394 | DOI | MR | Zbl
[58] S. Fischler; T. Rivoal On the values of -functions, Comment. Math. Helv., Volume 89 (2014) no. 2, pp. 313-341 | DOI | MR
[59] S. Fischler; T. Rivoal Arithmetic theory of -operators, J. Éc. polytech. Math., Volume 3 (2016), pp. 31-65 | DOI | Numdam | MR
[60] S. Fischler; T. Rivoal On the denominators of the Taylor coefficients of -functions, Kyushu J. Math., Volume 71 (2017) no. 2, pp. 287-298 | DOI | MR | Zbl
[61] S. Fischler; T. Rivoal Microsolutions of differential operators and values of arithmetic Gevrey series, Amer. J. Math., Volume 140 (2018) no. 2, pp. 317-348 | DOI | MR | Zbl
[62] S. Fischler; T. Rivoal Rational approximation to values of -functions, and their expansions in integer bases, Manuscripta Math., Volume 155 (2018) no. 3-4, pp. 579-595 (Erratum : Ibid. p. 597–598) | DOI | MR | Zbl
[63] S. Fischler; T. Rivoal Linear independence of values of -functions, J. Eur. Math. Soc. (JEMS), Volume 22 (2020) no. 5, pp. 1531-1576 | DOI
[64] S. Fischler; T. Rivoal Linear independence of values of -functions, II : outside the disk of convergence, Ann. Math. Qué., Volume 45 (2021) no. 1, pp. 53-93 | DOI | Zbl
[65] S. Fischler; T. Rivoal On Siegel’s problem for -functions, Rend. Semin. Mat. Univ. Padova, Volume 148 (2022), pp. 83-115 | DOI | Numdam | MR
[66] S. Fischler; T. Rivoal Effective algebraic independence of values of -functions, Math. Z., Volume 305 (2023) no. 3, 48, 17 pages | DOI | MR | Zbl
[67] S. Fischler; J. Sprang; W. Zudilin Many values of the Riemann zeta function at odd integers are irrational, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 7, pp. 707-711 | DOI | Numdam | MR | Zbl
[68] S. Fischler; J. Sprang; W. Zudilin Many odd zeta values are irrational, Compositio Math., Volume 155 (2019) no. 5, pp. 938-952 | DOI | MR | Zbl
[69] J. Fresán; P. Jossen A non-hypergeometric -function, Ann. of Math. (2), Volume 194 (2021) no. 3, pp. 903-942 | Zbl
[70] G. Frobenius Über die Integration der linearen Differentialgleichungen durch Reihen, J. reine angew. Math., Volume 76 (1873), pp. 214-235 | Zbl
[71] A. I. Galočkin Lower bounds of polynomials in the values of a certain class of analytic functions, Mat. Sb. (N.S.), Volume 95 (1974), pp. 396-417 | MR
[72] A. I. Galočkin The arithmetic properties of the values of some entire hypergeometric functions, Sibirsk. Mat. Zh., Volume 17 (1976) no. 6, pp. 1220-1235 | MR
[73] A. I. Galočkin Criterion for membership of hypergeometric Siegel functions in a class of -functions, Mat. Zametki, Volume 29 (1981) no. 1, pp. 3-14 | MR | Zbl
[74] A. Gel’fond Sur les nombres transcendants, C. R. Acad. Sci. Paris, Volume 189 (1929), pp. 1224-1226 | Zbl
[75] A. Gel’fond Sur le 7ème problème de Hilbert, Bull. Acad. Sci. URSS, Volume 7 (1934), pp. 623-640
[76] M. L. Glasser; I. J. Zucker Extended Watson integrals for the cubic lattices, Proc. Nat. Acad. Sci. U.S.A., Volume 74 (1977) no. 5, pp. 1800-1801 | DOI | MR | Zbl
[77] V. A. Gorelov On the Siegel conjecture for the case of second-order linear homogeneous differential equations, Mat. Zametki, Volume 75 (2004) no. 4, pp. 549-565 | MR
[78] V. A. Gorelov On the structure of the set of -functions satisfying second-order linear differential equations, Mat. Zametki, Volume 78 (2005) no. 3, pp. 331-348 | DOI | MR
[79] P. A. Griffiths Periods of integrals on algebraic manifolds : summary and discussion of open problems, Bull. Amer. Math. Soc., Volume 76 (1970), pp. 228-296 | DOI | Zbl
[80] D. Yu. Grigor’ev Complexity of factoring and calculating the GCD of linear ordinary differential operators, J. Symbolic Comput., Volume 10 (1990) no. 1, pp. 7-37 | DOI | MR | Zbl
[81] P. Grinspan Approximation et indépendance algébrique de quasi-périodes de variétés abéliennes, thèse de doctorat, Université Paris 6 (2000) (tel-00001328)
[82] W. A. Harris; Y. Sibuya The reciprocals of solutions of linear ordinary differential equations, Adv. in Math., Volume 58 (1985) no. 2, pp. 119-132 | DOI | MR | Zbl
[83] M. Hata On the linear independence of the values of polylogarithmic functions, J. Math. Pures Appl. (9), Volume 69 (1990) no. 2, pp. 133-173 | MR | Zbl
[84] M. Hata Rational approximations to and some other numbers, Acta Arith., Volume 63 (1993) no. 4, pp. 335-349 | DOI | MR | Zbl
[85] C. Hermite Sur la fonction exponentielle, C. R. Acad. Sci. Paris, Volume 77 (1873), p. 18-24, 74–79, 226–233 et 285–293 (disponible à http://www.bibnum.education.fr/mathematiques/theorie-des-nombres/la-demonstration-de-la-transcendance-de-e) | Zbl
[86] D. Hilbert Sur les problèmes futurs des mathématiques, Gauthier-Villars, Paris, 1902 (réédition Jacques Gabay, 1990)
[87] E. Hille Ordinary differential equations in the complex domain, Dover Publications, Inc., Mineola, NY, 1997 (Reprint of the 1976 original) | MR
[88] A. Huber; S. Müller-Stach Periods and Nori motives, Ergeb. Math. Grenzgeb. (3), 65, Springer, Cham, 2017, xxiii+372 pages | DOI | MR
[89] E. L. Ince Ordinary Differential Equations, Dover Publications, New York, 1944 (disponible à https://archive.org/details/ordinarydifferen029666mbp)
[90] G. S. Joyce; I. J. Zucker Special values of the hypergeometric series. III, Math. Proc. Cambridge Philos. Soc., Volume 133 (2002) no. 2, pp. 213-222 | DOI | MR | Zbl
[91] N. Katz Nilpotent connections and the monodromy theorem : applications of a result of Turrittin, Publ. Math. Inst. Hautes Études Sci., Volume 39 (1970), pp. 175-232 | DOI | Numdam | Zbl
[92] A. Ya. Kintchine Continued fractions, Dover Publications, 1935 (trad. anglaise : 1964, rééditions 1992, 1997)
[93] J. F. Koksma; J. Popken Zur Transzendenz von , J. reine angew. Math., Volume 168 (1932), pp. 211-230 | Zbl
[94] M. Kontsevich; D. Zagier Periods, Mathematics unlimited—2001 and beyond, Springer, Berlin, 2001, pp. 771-808 | DOI | MR | Zbl
[95] D. Krammer An example of an arithmetic Fuchsian group, J. reine angew. Math., Volume 473 (1996), pp. 69-85 | Zbl
[96] R Kuzmin Sur une nouvelle classe de nombres transcendants, Izv. Akad. Nauk SSSR Ser. Mat., Volume 7 (1930) no. 6, pp. 585-597 (en russe) | Zbl
[97] P. Lairez Computing periods of rational integrals, Math. Comp., Volume 85 (2016) no. 300, pp. 1719-1752 | DOI | MR | Zbl
[98] J.-H. Lambert Mémoire sur quelques propriétés remarquables des quantités transcendantes circulaires et logarithmiques, Mémoires de l’Académie royale des sciences de Berlin, Volume 17 (1861), pp. 265-322
[99] E. Landau Sur les conditions de divisibilité d’un produit de factorielles par un autre, Collected works, I, Thales-Verlag, 1985, p. 116
[100] F. Le Lionnais Les nombres remarquables, Actualités scientifiques et industrielles, 1407, Hermann, Paris, 1983
[101] A-M. Legendre Éléments de géométrie, 1795 (Note IV)
[102] G. Lepetit Le théorème d’André-Chudnovsky-Katz, 2018 (mémoire de master recherche, Institut Fourier, Grenoble) | arXiv
[103] G. Lepetit Le théorème d’André-Chudnovsky-Katz ‘au sens large’, North-West. Eur. J. Math., Volume 7 (2021), pp. 83-149 | Zbl
[104] L. Lewin Dilogarithms and associated functions, Macdonald, London, 1958 | MR
[105] F. Lindemann Ueber die Zahl , Math. Ann., Volume 20 (1882), pp. 213-225 | DOI
[106] J. Liouville Sur des classes très étendues de quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationnelles algébriques, J. Math. Pures Appl., Volume 16 (1851), pp. 133-142 | Numdam
[107] K. Mahler Zur Approximation der Exponentialfunktion und des Logarithmus. Teil I, J. reine angew. Math., Volume 166 (1931), pp. 118-136 | Zbl
[108] K. Mahler On the approximation of , Indag. Math., Volume 15 (1953), pp. 30-42 | DOI | MR | Zbl
[109] K. Mahler Applications of a theorem by A. B. Shidlovski, Proc. Roy. Soc. Ser. A, Volume 305 (1968), pp. 149-173 | DOI | MR | Zbl
[110] B. Malgrange Équations différentielles linéaires et transformation de Fourier. Une introduction., Ensaios Matemáticos, 1, Sociedade Brasileira de Matemática, Rio de Janeiro, 1989
[111] R. Marcovecchio Linear independence of linear forms in polylogarithms, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), Volume 5 (2006) no. 1, pp. 1-11 | Numdam | MR | Zbl
[112] R. Marcovecchio The Rhin-Viola method for , Acta Arith., Volume 139 (2009) no. 2, pp. 147-184 | DOI | MR | Zbl
[113] H. McKean; V. Moll Elliptic curves. Function theory, geometry, arithmetic, Cambridge University Press, Cambridge, 1997 | DOI | MR
[114] M. Nagata Rational approximations to linear forms in values of -functions, Acta Arith., Volume 70 (1995) no. 4, pp. 313-341 | DOI | MR | Zbl
[115] M. Nagata Diophantine approximations related to rational values of -functions, Acta Arith., Volume 106 (2003) no. 4, pp. 311-344 | DOI | MR | Zbl
[116] Yu. V. Nesterenko Linear independence of numbers, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1985) no. 1, pp. 46-49 | MR | Zbl
[117] Yu. V. Nesterenko Modular functions and transcendence questions, Mat. Sb., Volume 187 (1996) no. 9, pp. 65-96 | DOI | MR
[118] Yu. V. Nesterenko Some remarks on , Mat. Zametki, Volume 59 (1996) no. 6, pp. 865-880 | DOI | MR
[119] Yu. V. Nesterenko; A. B. Shidlovskiĭ On the linear independence of values of -functions, Mat. Sb., Volume 187 (1996) no. 8, pp. 93-108 | DOI | MR
[120] E. M. Nikišin Irrationality of values of functions , Mat. Sb. (N.S.), Volume 109(151) (1979) no. 3, pp. 410-417 | MR | Zbl
[121] I. Niven A simple proof that is irrational, Bull. Amer. Math. Soc., Volume 53 (1947), p. 509 | DOI | MR | Zbl
[122] I. Niven Irrational numbers, The Carus Mathematical Monographs, 11, The Mathematical Association of America & John Wiley and Sons, Inc., New York, N.Y., 1967 | MR
[123] C. F. Osgood Nearly perfect systems and effective generalizations of Shidlovski’s theorem, J. Number Theory, Volume 13 (1981) no. 4, pp. 515-540 | DOI | MR | Zbl
[124] H. Padé Sur la représentation approchée d’une fonction par des fractions rationnelles, Gauthier-Villars et fils, Paris, 1892 (Thèse de doctorat de la Faculté des sciences)
[125] H. Padé Œuvres, Librairie Albert Blanchard, Paris, 1984 (rassemblées et présentées par Claude Brezinski)
[126] F. Pellarin; T. Rivoal; J.-A. Weil Some remarks on classical modular forms and hypergeometric series (2019) (http://rivoal.perso.math.cnrs.fr/articles/modhyp.pdf)
[127] O. Perron Über lineare Differentialgleichungen mit rationalen Koeffizienten, Acta Math., Volume 34 (1910), pp. 139-163 | DOI | Zbl
[128] M. Petkovšek; H. S. Wilf; D. Zeilberger , A K Peters, Ltd., Wellesley, MA, 1996 (http://www.math.rutgers.edu/~zeilberg/AeqB.pdf)
[129] E. G. C. Poole Introduction to the theory of linear differential equations, Dover Publications, Inc., New York, 1960 | MR
[130] A. van der Poorten A proof that Euler missed... Apéry’s proof of the irrationality of , Math. Intelligencer, Volume 1 (1978/79) no. 4, pp. 195-203 | DOI | MR | Zbl
[131] S. Ramanujan Modular equations and approximations to , Quart. J. Math. Oxford Ser., Volume 45 (1914), pp. 350-372 | Zbl
[132] É. Reyssat Mesures de transcendance pour les logarithmes de nombres rationnels, Diophantine approximations and transcendental numbers (Luminy, 1982) (Progress in Math.), Volume 31, Birkhäuser Boston, Boston, MA, 1983, pp. 235-245 | DOI | MR | Zbl
[133] G. Rhin; C. Viola The group structure for , Acta Arith., Volume 97 (2001) no. 3, pp. 269-293 | DOI | MR
[134] T. Rivoal La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs, C. R. Acad. Sci. Paris Sér. I Math., Volume 331 (2000) no. 4, pp. 267-270 | DOI | MR | Zbl
[135] T. Rivoal Indépendance linéaire des valeurs des polylogarithmes, J. Théor. Nombres Bordeaux, Volume 15 (2003) no. 2, pp. 551-559 | DOI | Numdam | MR | Zbl
[136] T. Rivoal Convergents and irrationality measures of logarithms, Rev. Mat. Iberoamericana, Volume 23 (2007) no. 3, pp. 931-952 | DOI | MR | Zbl
[137] T. Rivoal On the arithmetic nature of the values of the gamma function, Euler’s constant, and Gompertz’s constant, Michigan Math. J., Volume 61 (2012) no. 2, pp. 239-254 | DOI | MR | Zbl
[138] T. Rivoal Remarks on the impossibility of a Siegel-Shidlovskii like theorem for G-functions, Hardy-Ramanujan J., Volume 38 (2015), pp. 29-35 | MR | Zbl
[139] T. Rivoal Valeurs algébriques de -fonctions aux points algébriques (2016) (hal-03676576)
[140] T. Rivoal Is Euler’s constant a value of an arithmetic special function ? (2017) (hal-01619235)
[141] T. Rivoal Factors of -operators with an -apparent singularity at zero, J. Math. Soc. Japan, Volume 74 (2022) no. 3, pp. 719-733 | DOI | MR | Zbl
[142] T. Rivoal On Galochkin’s characterization of hypergeometric -functions, Mosc. J. Comb. Number Theory, Volume 11 (2022) no. 1, pp. 11-19 | DOI | MR | Zbl
[143] T. Rivoal; J. Roques -functions of order 2 and units of -values, 2015 (http://rivoal.perso.math.cnrs.fr/articles/unitse.pdf. Une partie des résultats de cette prépublication est parue dans [144])
[144] T. Rivoal; J. Roques On the algebraic dependence of -functions, Bull. London Math. Soc., Volume 48 (2016) no. 2, pp. 271-279 | DOI | Zbl
[145] T. Rivoal; J. Roques Siegel’s problem for -functions of order (2016) (prépublication)
[146] T. Rivoal; J. Roques Holomorphic solutions of -operators, Israel J. Math., Volume 220 (2017) no. 1, pp. 275-282 | DOI | MR | Zbl
[147] F. Rodriguez Villegas Integral ratios of factorials and algebraic hypergeometric functions, 2007 | arXiv
[148] K. F. Roth Rational approximations to algebraic numbers, Mathematika, Volume 2 (1955), pp. 1-20 (Corrigendum : Ibid., p. 168) | DOI | Zbl
[149] E. A. Rukhadze A lower bound for the approximation of by rational numbers, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1987) no. 6, p. 25-29, 97 | MR | Zbl
[150] V. Kh. Salikhov On the irrationality measure of , Dokl. Akad. Nauk, Volume 417 (2007) no. 6, pp. 753-755 | DOI | MR
[151] V. Kh. Salikhov On the measure of irrationality of , Mat. Zametki, Volume 88 (2010) no. 4, pp. 583-593 | DOI | MR | Zbl
[152] E. Sandifer How Euler did it, MAA Online, http://eulerarchive.maa.org/hedi/, 2006
[153] T. Schneider Transzendenzuntersuchungen periodischer Funktionen I. Transzendenz von Potenzen, J. reine angew. Math., Volume 172 (1935), pp. 65-69 | DOI | MR | Zbl
[154] T. Schneider Introduction aux nombres transcendants, Gauthier-Villars, Paris, 1959 | MR
[155] A. B. Shidlovskii A criterion for algebraic independence of the values of a class of entire functions, Izv. Akad. Nauk SSSR Ser. Mat., Volume 23 (1959), pp. 35-66 | MR | Zbl
[156] A. B. Shidlovskii Algebraic independence of the values of certain hypergeometric -functions, Trudy Moskov. Mat. Obšč., Volume 18 (1968), pp. 55-64 | MR | Zbl
[157] A. B. Shidlovskii Transcendental numbers, De Gruyter Studies in Math., 12, Walter de Gruyter & Co., Berlin, 1989 | DOI | MR
[158] C. L. Siegel Über einige Anwendungen diophantischer Approximationen, 1, S. Abhandlungen Akad., Berlin, 1929
[159] C. L. Siegel Transcendental numbers, Annals of Math. Studies, 16, Princeton University Press, Princeton, NJ, 1949 | MR
[160] C. L. Siegel Über einige Anwendungen diophantischer Approximationen, On some applications of Diophantine approximations (Quad./Monogr.), Volume 2, Scuola Normale, Pisa & Springer, 2014 (Avec un commentaire et l’article « Integral points on curves : Siegel’s theorem after Siegel’s proof » par C. Fuchs and U. Zannier) | MR
[161] L. J. Slater Generalized hypergeometric functions, Cambridge University Press, Cambridge, 2008 | MR
[162] J. de Stainville Mélanges d’analyse algébrique et de géométrie, http://www.bibnum.education.fr/mathematiques/theorie-des-nombres/melange-d-analyse-algebrique-et-de-geometrie, 1815
[163] P. F. Stiller Classical automorphic forms and hypergeometric functions, J. Number Theory, Volume 28 (1988) no. 2, pp. 219-232 | DOI | MR | Zbl
[164] M. Waldschmidt Une mesure de transcendance de , Séminaire Delange-Pisot-Poitou, 1975/76, Volume 17, no. 2, Secrétariat Math., Paris, 1977 (Exp. No. G4) | MR
[165] J. Wolfart Werte hypergeometrischer Funktionen, Invent. Math., Volume 92 (1988) no. 1, pp. 187-216 | DOI | MR | Zbl
[166] D. Zeilberger; W. Zudilin The irrationality measure of is at most 7.103205334137..., Mosc. J. Comb. Number Theory, Volume 9 (2020) no. 4, pp. 407-419 | DOI | Zbl
[167] W. Zudilin On rational approximations of values of a class of entire functions, Mat. Sb., Volume 186 (1995) no. 4, pp. 89-124 | DOI | MR
[168] W. Zudilin On the irrationality measure of values of -functions, Izv. Ross. Akad. Nauk Ser. Mat., Volume 60 (1996) no. 1, pp. 87-114 | DOI | MR
[169] W. Zudilin One of the numbers , , , is irrational, Uspekhi Mat. Nauk, Volume 56 (2001) no. 4(340), pp. 149-150 | DOI | MR
[170] W. Zudilin Two hypergeometric tales and a new irrationality measure of , Ann. Math. Québec, Volume 38 (2014) no. 1, pp. 101-117 | DOI | MR | Zbl
Cité par Sources :