Mersenne banner

Livres, Actes et Séminaires du Centre Mersenne

  • Livres
  • Séminaires
  • Congrès
  • Tout
  • Auteur
  • Titre
  • Bibliographie
  • Plein texte
NOT
Entre et
  • Tout
  • Auteur
  • Titre
  • Date
  • Bibliographie
  • Mots-clés
  • Plein texte
  • Précédent
  • Journées mathématiques X-UPS
  • Année 2015
  • p. 57-85
Modélisation fluide des plasmas dans les Tokamaks
Jacques Blum1
1 Laboratoire J.A. Dieudonné, Université de Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 02, France et Inria, Centre de recherche Sophia Antipolis Méditerranée, Équipe Projet CASTOR
Journées mathématiques X-UPS, Des problèmes à $N$ corps aux Tokamaks (2015), pp. 57-85.
  • Résumé

Ce texte présente dans un premier temps les deux approches pour la modélisation d’un plasma (gaz ionisé) en présence d’un champ magnétique : l’approche microscopique basée sur les équations cinétiques (Vlasov, Boltzmann,...) et l’approche macroscopique basée sur les équations de la magnétohydrodynamique (MHD) et comment l’on passe de l’une à l’autre. Pour une machine du type Tokamak qui vise à réaliser la fusion de noyaux d’atomes légers par le principe du confinement magnétique, on montrera qu’il existe des échelles de temps allant de la microseconde (temps d’Alfven) à la seconde (temps de diffusion résistive) et que le modèle peut être simplifié en se plaçant à l’échelle de temps du phénomène qu’on se propose d’étudier. On établira ainsi le principe de l’évolution quasi-statique de l’équilibre du plasma dans un Tokamak et on montrera comment, avec des méthodes numériques appropriées, on peut reconstruire en temps réel l’équilibre du plasma à chaque instant de la décharge (lignes de flux, surfaces magnétiques, densité de courant, frontière libre du plasma,...). Ce problème rentre dans la catégorie des problèmes inverses, qui sont mal-posés au sens d’Hadamard et on montrera comment, à l’aide de techniques mathématiques de régularisation, on peut les rendre bien-posés. On pourra alors aborder le problème du contrôle de l’équilibre du plasma en temps réel, tel qu’il se pose dans chaque Tokamak, en utilisant des bases hilbertiennes associées à l’opérateur aux dérivées partielles qui régit le phénomène. Ce dispositif sera utilisé dans le Tokamak WEST en cours de montage au CEA à Cadarache, qui vise à tester le divertor en tungstène qui sera réalisé pour ITER.

  • Détail
  • Export
  • Comment citer
Publié le : 2024-08-06
DOI : 10.5802/xups.2015-03
Affiliations des auteurs :
Jacques Blum 1

1 Laboratoire J.A. Dieudonné, Université de Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 02, France et Inria, Centre de recherche Sophia Antipolis Méditerranée, Équipe Projet CASTOR
  • BibTeX
  • RIS
  • EndNote
@incollection{XUPS_2015____57_0,
     author = {Jacques Blum},
     title = {Mod\'elisation fluide des plasmas {dans~les~Tokamaks}},
     booktitle = {Des probl\`emes \`a $N$ corps aux Tokamaks},
     series = {Journ\'ees math\'ematiques X-UPS},
     pages = {57--85},
     publisher = {Les \'Editions de l{\textquoteright}\'Ecole polytechnique},
     year = {2015},
     doi = {10.5802/xups.2015-03},
     language = {fr},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/xups.2015-03/}
}
TY  - JOUR
AU  - Jacques Blum
TI  - Modélisation fluide des plasmas dans les Tokamaks
JO  - Journées mathématiques X-UPS
PY  - 2015
SP  - 57
EP  - 85
PB  - Les Éditions de l’École polytechnique
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/xups.2015-03/
DO  - 10.5802/xups.2015-03
LA  - fr
ID  - XUPS_2015____57_0
ER  - 
%0 Journal Article
%A Jacques Blum
%T Modélisation fluide des plasmas dans les Tokamaks
%J Journées mathématiques X-UPS
%D 2015
%P 57-85
%I Les Éditions de l’École polytechnique
%U https://proceedings.centre-mersenne.org/articles/10.5802/xups.2015-03/
%R 10.5802/xups.2015-03
%G fr
%F XUPS_2015____57_0
Jacques Blum. Modélisation fluide des plasmas dans les Tokamaks. Journées mathématiques X-UPS, Des problèmes à $N$ corps aux Tokamaks (2015), pp. 57-85. doi : 10.5802/xups.2015-03. https://proceedings.centre-mersenne.org/articles/10.5802/xups.2015-03/
  • Bibliographie
  • Cité par

[A + 10] J. F. Artaud et al. The CRONOS suite of codes for integrated tokamak modelling, Nuclear Fusion, Volume 50 (2010) no. 4, 043001 | DOI

[BB97] J. Blum; H. Buvat An inverse problem in plasma physics : The identification of the current density profile in a tokamak, Large scale optimization with applications, Part 1 : Optimization in inverse problems and design (IMA Volumes in Math. and its Applications), Volume 92, Springer, New York, 1997, pp. 17-36 | DOI | Zbl

[BBF08] J. Blum; C. Boulbe; B. Faugeras Real-time equilibrium reconstruction in a Tokamak, CP988, Burning plasma diagnostics, American Institute of Physics, 2008, pp. 420-429

[BBF12] J. Blum; C. Boulbe; B. Faugeras Reconstruction of the equilibrium of the plasma in a Tokamak and identification of the current density profile in real time, J. Comput. Phys., Volume 231 (2012), pp. 960-980 | DOI

[BK78] R. N. Byrne; H. H. Klein G2M, a two-dimensional diffusion time scale tokamak code, J. Comput. Phys., Volume 26 (1978) no. 3, pp. 352-378 | DOI | MR | Zbl

[BLF84] J. Blum; J. Le Foll Plasma equilibrium evolution at the resistive diffusion timescale, Computer Physics Reports, Volume 1 (1984) no. 7-8, pp. 465-494 | DOI

[BLFT81] J. Blum; J. Le Foll; B. Thooris The self-consistent equilibrium and diffusion code SCED, Comput. Phys. Commun., Volume 24 (1981), pp. 235-254 | DOI

[BLO + 90] J. Blum; E. Lazzaro; J. O’Rourke; B. Keegan; Y. Stefan Problems and methods of self-consistent reconstruction of tokamak equilibrium profiles from magnetic and polarimetric measurements, Nuclear Fusion, Volume 30 (1990) no. 8, p. 1475 | DOI

[Blu89] J. Blum Numerical simulation and optimal control in plasma physics, Wiley/Gauthier-Villars Series in Modern Applied Math., John Wiley & Sons, Ltd., Chichester ; Gauthier-Villars, Montrouge, 1989 | MR

[Bos01] K. Bosak Real-time numerical identification of plasma in tokamak fusion reactor, Master’s thesis, University of Wroclaw (2001)

[Bra65] S. I. Braginskii Transport processes in plasma, Review of plasma physics (M. A. Leontovich, ed.), Volume 1, Consultants Bureau, New York, NY, 1965, pp. 205-311

[Cia78] Ph. G. Ciarlet The finite element method for elliptic problems, Studies in Math. and its Applications, 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978 | MR

[HB + 15] H. Heumann; J. Blum et al. Quasi-static free-boundary equilibrium of toroidal plasma with CEDRES++ : Computational methods and applications, J. Plasma Phys., Volume 81 (2015) no. 03, 905810301 | DOI

[HH76] F. L. Hinton; R. D. Hazeltine Theory of plasma transport in toroidal confinement systems, Rev. Modern Phys., Volume 48 (1976) no. 2, part 1, pp. 239-308 | DOI | MR

[HJ79] S. P. Hirshman; S. C. Jardin Two-dimensional transport of tokamak plasmas, Phys. Fluids, Volume 22 (1979) no. 4, pp. 731-742 | DOI | MR | Zbl

[HMR77] F. J. Helton; R. L. Miller; J. M. Rawls Two-dimensional multi-fluid tokamak transport code, J. Comput. Phys., Volume 24 (1977) no. 2, pp. 117-132 | DOI

[Hog79] J. T. Hogan The accessibility of high-beta tokamak states, Nuclear Fusion, Volume 19 (1979) no. 6, p. 753 | DOI

[HPL80] J. A. Holmes; Y.-K. M. Peng; S. J. Lynch Evolution of flux-conserving tokamak equilibria with preprogrammed cross sections, J. Comput. Phys., Volume 36 (1980) no. 1, pp. 35-54 | DOI | Zbl

[Jar81] S. C. Jardin Self-consistent solutions of the plasma transport equations in an axisymmetric toroidal system, J. Comput. Phys., Volume 43 (1981) no. 1, pp. 31-60 | DOI | Zbl

[Mil80] R. L. Miller Shape control of doublets, Nuclear Fusion, Volume 20 (1980) no. 2, p. 133 | DOI

[MPS72] E. K. Maschke; J. Pantuso Sudano Étude analytique de l’évolution d’un plasma toroïdal de type Tokamak à section non circulaire (1972) (Report EUR-CEA-FC-668)

[NG78] D. B. Nelson; H. Grad Heating and transport in Tokamaks of arbitrary shape and beta (1978) (Oak Ridge Report ORNL/TM-6094)

[PSZ78] G. V. Pereversev; V. D. Shafranov; L. E. Zakharov On the evolution of tokamak plasma equilibria, Theoretical and computational plasma physics, IAEA, Vienna, 1978, pp. 469-481

[SBAM82] D. E. Shumaker; J. K. Boyd; S. P. Auerbach; B. McNamara Numerical simulation of transport in a field-reversed mirror plasma, J. Comput. Phys., Volume 45 (1982) no. 2, pp. 266-290 | DOI | Zbl

[TA77] A. N. Tikhonov; V. Y. Arsenin Solutions of Ill-posed problems, Winston, Washington D.C., 1977

[TS83] A. D. Turnbull; R. G. Storer A plasma resistive diffusion model, J. Comput. Phys., Volume 50 (1983) no. 3, pp. 409-435 | DOI | MR | Zbl

Cité par Sources :

Diffusé par : Publié par : Développé par :
  • Nous suivre