@incollection{XUPS_2000____1_0, author = {Anne-Marie Aubert}, title = {Un peu d{\textquoteright}histoire des groupes finis et quelques exemples simples}, booktitle = {Groupes finis}, series = {Journ\'ees math\'ematiques X-UPS}, pages = {1--56}, publisher = {Les \'Editions de l{\textquoteright}\'Ecole polytechnique}, year = {2000}, doi = {10.5802/xups.2000-01}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/xups.2000-01/} }
TY - JOUR AU - Anne-Marie Aubert TI - Un peu d’histoire des groupes finis et quelques exemples simples JO - Journées mathématiques X-UPS PY - 2000 SP - 1 EP - 56 PB - Les Éditions de l’École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/xups.2000-01/ DO - 10.5802/xups.2000-01 LA - fr ID - XUPS_2000____1_0 ER -
%0 Journal Article %A Anne-Marie Aubert %T Un peu d’histoire des groupes finis et quelques exemples simples %J Journées mathématiques X-UPS %D 2000 %P 1-56 %I Les Éditions de l’École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/xups.2000-01/ %R 10.5802/xups.2000-01 %G fr %F XUPS_2000____1_0
Anne-Marie Aubert. Un peu d’histoire des groupes finis et quelques exemples simples. Journées mathématiques X-UPS, Groupes finis (2000), pp. 1-56. doi : 10.5802/xups.2000-01. https://proceedings.centre-mersenne.org/articles/10.5802/xups.2000-01/
[ABFS99] Michael Aschbacher; Helmut Bender; Walter Feit; Ronald Solomon Michio Suzuki (1926–1998), Notices Amer. Math. Soc., Volume 46 (1999) no. 5, pp. 543-551 | MR
[AMR96] Anne-Marie Aubert; Jean Michel; Raphaël Rouquier Correspondance de Howe pour les groupes réductifs sur les corps finis, Duke Math. J., Volume 83 (1996) no. 2, pp. 353-397 | DOI | Zbl
[Art55a] Emil Artin The orders of the classical simple groups, Comm. Pure Appl. Math., Volume 8 (1955), pp. 455-472 | DOI | MR | Zbl
[Art55b] Emil Artin The orders of the linear groups, Comm. Pure Appl. Math., Volume 8 (1955), pp. 355-365 | DOI | MR | Zbl
[Art96] Emil Artin Algèbre géométrique, Les Grands Classiques Gauthier-Villars, Éditions Jacques Gabay, Paris, 1996 (Traduction par M. Lazard de l’édition originale en anglais de 1957. Réédition de l’édition française de 1962)
[Aub03] Anne-Marie Aubert Character sheaves and generalized Springer correspondence, Nagoya Math. J., Volume 170 (2003), pp. 47-72 | DOI | MR | Zbl
[Bur55] W. Burnside Theory of groups of finite order, Dover Publications, Inc., New York, 1955 (1re éd. en 1911) | MR
[Car56] Robert D. Carmichael Introduction to the theory of groups of finite order, Dover Publications, Inc., New York, 1956 | MR
[Car89] Roger W. Carter Simple groups of Lie type, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1989 | MR
[Che55] Claude Chevalley Sur certains groupes simples, Tohoku Math. J. (2), Volume 7 (1955), pp. 14-66 | DOI | MR | Zbl
[Che97] Claude Chevalley The algebraic theory of spinors and Clifford algebras, Springer-Verlag, Berlin, 1997 (Collected works. Vol. 2, Columbia University Press, New York, 1954)
[Con69a] J. H. Conway A characterisation of Leech’s lattice, Invent. Math., Volume 7 (1969), pp. 137-142 | DOI | MR | Zbl
[Con69b] J. H. Conway A group of order , Bull. London Math. Soc., Volume 1 (1969), pp. 79-88 | DOI | MR | Zbl
[Dic01] Leonard Eugene Dickson Theory of linear groups in an arbitrary field, Trans. Amer. Math. Soc., Volume 2 (1901) no. 4, pp. 363-394 Errata : Ibid. 3 (1902), no. 4, p. 500 | DOI | MR
[Dic02] Leonard Eugene Dickson A class of groups in an arbitrary realm connected with the configuration of the 27 lines on a cubic surface, Q. J. Math., Volume 33 (1902), pp. 145-173 | Zbl
[Dic05] Leonard Eugene Dickson A new system of simple groups, Math. Ann., Volume 60 (1905), pp. 137-150 | DOI | MR
[Dic07] Leonard Eugene Dickson A class of groups in an arbitrary realm connected with the configuration of the 27 lines on a cubic surface, II, Q. J. Math., Volume 39 (1907), pp. 205-209 | Zbl
[Dic58] Leonard Eugene Dickson Linear groups : With an exposition of the Galois field theory, Dover Publications, Inc., New York, 1958 (Réédition de l’édition originale de 1901)
[Die71] Jean A. Dieudonné La géométrie des groupes classiques, Ergeb. Math. Grenzgeb. (3), 5, Springer-Verlag, Berlin-New York, 1971 | MR
[Ema89] Maurizio Emaldi Giovanni Frattini 1852–1925, Irish Math. Soc. Bull. (1989) no. 23, pp. 57-61 | DOI | MR | Zbl
[FH91] William Fulton; Joe Harris Representation theory. A first course, Graduate Texts in Math., 129, Springer-Verlag, New York, 1991 | DOI
[Ful97] William Fulton Young tableaux. With applications to representation theory and geometry, London Math. Soc. Student Texts, 35, Cambridge University Press, Cambridge, 1997
[Gor68] Daniel Gorenstein Finite groups, Harper & Row, Publishers, New York-London, 1968
[Gér77] Paul Gérardin Weil representations associated to finite fields, J. Algebra, Volume 46 (1977) no. 1, pp. 54-101 | DOI | MR | Zbl
[How73] Roger Howe Invariant theory and duality for classical groups over finite fields, with applications to their singular representation theory (1973) (Preprint, Yale Univ.)
[Hup67] B. Huppert Endliche Gruppen. I, Grundlehren Math. Wissen., 134, Springer-Verlag, Berlin-New York, 1967 | DOI
[Jac75] Nathan Jacobson Lectures in abstract algebra, Graduate Texts in Math., 30–32, Springer-Verlag, New York-Berlin, 1975
[Jac85] Nathan Jacobson Basic algebra. I, W. H. Freeman and Company, New York, 1985
[Jam78] Gordon James The representation theory of the symmetric groups, Lect. Notes in Math., 682, Springer, Berlin, 1978 | Numdam
[JK81] Gordon James; Adalbert Kerber The representation theory of the symmetric group, Encyclopedia of Mathematics and its applications, 16, Addison-Wesley Publishing Co., Reading, Mass., 1981
[Jor89] Camille Jordan Traité des substitutions et des équations algébriques, Les Grands Classiques Gauthier-Villars, Éditions Jacques Gabay, Sceaux, 1989 (Réédition de l’édition originale de 1870)
[Kir74] A. Kirillov Éléments de la théorie des représentations, Éditions Mir, Moscou, 1974 | MR
[KM90] D. Kastler; M. Mebkhout Revisiting the Mackey-Stone-von Neumann theorem : the -algebra of a presymplectic space, Nuclear Phys. B Proc. Suppl., Volume 18B (1990), pp. 200-211 Recent advances in field theory (Annecy-le-Vieux, 1990) | DOI | MR | Zbl
[Lee67] John Leech Notes on sphere packings, Canad. J. Math., Volume 19 (1967), pp. 251-267 | DOI | MR | Zbl
[LV80] Gérard Lion; Michèle Vergne The Weil representation, Maslov index and theta series, Progress in Math., 6., Birkhäuser, Boston, Mass., 1980 | DOI
[Mac89] George W. Mackey Marshall Harvey Stone. 1903–1989, Notices Amer. Math. Soc., Volume 36 (1989) no. 3, pp. 221-223 | MR | Zbl
[Mat61] Émile Mathieu Mémoire sur l’étude des fonctions de plusieurs quantités, sur la manière de les former et sur les substitutions qui les laissent invariables, J. Math. Pures Appl., Volume 6 (1861), pp. 241-323 | Numdam
[Mat73] Émile Mathieu Sur la fonction cinq fois transitive de 24 quantités, J. Math. Pures Appl., Volume 18 (1873), pp. 25-46 | Numdam | Zbl
[MVW87] Colette Mœglin; Marie-France Vignéras; Jean-Loup Waldspurger Correspondances de Howe sur un corps -adique, Lect. Notes in Math., 1291, Springer-Verlag, Berlin, 1987 | DOI
[Neu02] Markus Neuhauser An explicit construction of the metaplectic representation over a finite field, J. Lie Theory, Volume 12 (2002) no. 1, pp. 15-30 | MR | Zbl
[Par89] Karen Hunger Parshall Eliakim Hastings Moore and the founding of a mathematical community in America, 1892–1902, A century of mathematics in America, Part II (Hist. Math.), Volume 2, American Mathematical Society, Providence, RI, 1989, pp. 155-175 | MR | Zbl
[Par91] Karen Hunger Parshall A study in group theory : Leonard Eugene Dickson’s Linear groups, Math. Intelligencer, Volume 13 (1991) no. 1, pp. 7-11 | DOI | MR | Zbl
[PSA96] José Pantoja; Jorge Soto-Andrade Représentations de Weil de et , C. R. Acad. Sci. Paris Sér. I Math., Volume 323 (1996) no. 10, pp. 1109-1112 | Zbl
[Rot95] Joseph J. Rotman An introduction to the theory of groups, Graduate Texts in Math., 148, Springer-Verlag, New York, 1995 | DOI
[Sag01] Bruce E. Sagan The symmetric group. Representations, combinatorial algorithms, and symmetric functions., Graduate Texts in Math., 203, Springer, New York, NY, 2001
[Sco87] W. R. Scott Group theory, Dover Publications, Inc., New York, 1987
[Ser78] Jean-Pierre Serre Représentations linéaires des groupes finis, Hermann, Paris, 1978
[Ser99] Jean-Pierre Serre La vie et l’œuvre d’André Weil, Enseign. Math. (2), Volume 45 (1999) no. 1-2, pp. 5-16 | Zbl
[Sha62] David Shale Linear symmetries of free boson fields, Trans. Amer. Math. Soc., Volume 103 (1962), pp. 149-167 | DOI | MR | Zbl
[Suz60] Michio Suzuki A new type of simple groups of finite order, Proc. Nat. Acad. Sci. U.S.A., Volume 46 (1960), pp. 868-870 | DOI | MR | Zbl
[vN96] John von Neumann Mathematische Grundlagen der Quantenmechanik, Springer, Berlin, 1996 | DOI
[Wag78] Ascher Wagner A bibliography of William Burnside (1852–1927), Historia Math., Volume 5 (1978) no. 3, pp. 307-312 | DOI | MR | Zbl
[Wal77] Nolan R. Wallach Symplectic geometry and Fourier analysis, Lie Groups : History, Frontiers and Applications, V., Math Sci Press, Brookline, Mass., 1977
[Wal01] Jean-Loup Waldspurger Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés, Astérisque, 269, Société Mathématique de France, Paris, 2001 | Numdam
[Wei64] André Weil Sur certains groupes d’opérateurs unitaires, Acta Math., Volume 111 (1964), pp. 143-211 | DOI | Zbl
[Wey39] Hermann Weyl The classical groups. Their invariants and representations, Princeton University Press, Princeton, NJ, 1939
[Zel81] Andrey V. Zelevinsky Representations of finite classical groups. A Hopf algebra approach, Lect. Notes in Math., 869, Springer-Verlag, Berlin-New York, 1981 | MR
Cité par Sources :