Mersenne banner

Books, Proceedings and Seminars of Centre Mersenne

  • Books
  • Seminars
  • Conferences
  • All
  • Author
  • Title
  • References
  • Full text
NOT
Between and
  • All
  • Author
  • Title
  • Date
  • References
  • Keywords
  • Full text
  • Previous
  • Séminaire de théorie spectrale et géométrie
  • Volume 7 (1988-1989)
  • p. 33-34
  • Next
On the Dirichlet problem at infinity for manifolds of non-positive curvature (résumé)
Werner Ballmann
Séminaire de théorie spectrale et géométrie, Volume 7 (1988-1989), pp. 33-34.
  • Article information
  • Export
  • How to cite
DOI: 10.5802/tsg.65
  • BibTeX
  • RIS
  • EndNote
@article{TSG_1988-1989__7__33_0,
     author = {Werner Ballmann},
     title = {On the {Dirichlet} problem at infinity for manifolds of non-positive curvature (r\'esum\'e)},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {33--34},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {7},
     year = {1988-1989},
     doi = {10.5802/tsg.65},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.65/}
}
TY  - JOUR
AU  - Werner Ballmann
TI  - On the Dirichlet problem at infinity for manifolds of non-positive curvature (résumé)
JO  - Séminaire de théorie spectrale et géométrie
PY  - 1988-1989
SP  - 33
EP  - 34
VL  - 7
PB  - Institut Fourier
PP  - Grenoble
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.65/
DO  - 10.5802/tsg.65
LA  - en
ID  - TSG_1988-1989__7__33_0
ER  - 
%0 Journal Article
%A Werner Ballmann
%T On the Dirichlet problem at infinity for manifolds of non-positive curvature (résumé)
%J Séminaire de théorie spectrale et géométrie
%D 1988-1989
%P 33-34
%V 7
%I Institut Fourier
%C Grenoble
%U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.65/
%R 10.5802/tsg.65
%G en
%F TSG_1988-1989__7__33_0
Werner Ballmann. On the Dirichlet problem at infinity for manifolds of non-positive curvature (résumé). Séminaire de théorie spectrale et géométrie, Volume 7 (1988-1989), pp. 33-34. doi : 10.5802/tsg.65. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.65/
  • References
  • Cited by

[Ac] Ancona A. - Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. of Math., 125 ( 1987), 495-536. | MR | Zbl

[Ad] Anderson M.. - The Dirichlet problem at infinity for manifolds of negative curvature, J. Differential Geom., 18 ( 1983), 701-721. | MR | Zbl

[AS] Anderson M., Schoen R. - Positive harmonic functions on complete manifolds of negative curvature, Ann. of Math., 121 ( 1985), 429-461. | MR | Zbl

[B 1] Ballmann W. - Axial isometries of manifolds of non-positive curvature, Math. Ann., 259 ( 1982), 131-144. | MR | Zbl

[B 2] Ballmann W. - Nonpositively curved manifolds of higher rank, Ann. of Math., 122 ( 1985), 597-609. | MR | Zbl

[B 3] Ballmann W. - On the Dirichlet problem at infirüty for manifolds of nonpositive curvature, Forum Math., 1 ( 1989), 201-213. | MR | Zbl

[BS] Burns K., Spatzier R. - Manifolds of nonpositive curvature and their buildings, Publications Math. MES, 65 ( 1987), 35-59. | Numdam | MR | Zbl

[F] Fürstenberg Ii. - A Poisson for semi-simple Lie groups, Ann. of Math., 77 ( 1963), 335-386. | MR | Zbl

[K 1] Kifer Y. - Brownian motion and harmonic functions on manifoldsof negative curvature, Theory Probab. Appl., 21 ( 1976), 81-95. | MR | Zbl

[K 2] Kifer Y. - Brownian motion and positive harmonic functions on complete manifolds of non- positive curvature, Pitman Research Notes in Mathematics, 150 ( 1986), 132-178. | Zbl

[S] Sullivan D. - The Dirichlet problem at infinity for a negatively curved manifold, J. Differential Geom., 18 ( 1983), 723-732. | MR | Zbl

[Y 1] Yau S.T. - Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., 28 ( 1975). 201-228. | MR | Zbl

[Y 2] Yau S.T. - Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Ind. Univ. Math. J., 25 ( 1976), 659-670. | MR | Zbl

Cited by Sources:

Web publisher : Published by : Developed by :
  • Follow us