@article{TSG_1987-1988__6__109_0, author = {Sebasti\~ao de Almeida and Fabiano Brito}, title = {The geometry of closed hypersurfaces}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {109--116}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {6}, year = {1987-1988}, doi = {10.5802/tsg.61}, zbl = {0931.53028}, mrnumber = {1046262}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.61/} }
TY - JOUR AU - Sebastião de Almeida AU - Fabiano Brito TI - The geometry of closed hypersurfaces JO - Séminaire de théorie spectrale et géométrie PY - 1987-1988 SP - 109 EP - 116 VL - 6 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.61/ DO - 10.5802/tsg.61 LA - en ID - TSG_1987-1988__6__109_0 ER -
%0 Journal Article %A Sebastião de Almeida %A Fabiano Brito %T The geometry of closed hypersurfaces %J Séminaire de théorie spectrale et géométrie %D 1987-1988 %P 109-116 %V 6 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.61/ %R 10.5802/tsg.61 %G en %F TSG_1987-1988__6__109_0
Sebastião de Almeida; Fabiano Brito. The geometry of closed hypersurfaces. Séminaire de théorie spectrale et géométrie, Volume 6 (1987-1988), pp. 109-116. doi : 10.5802/tsg.61. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.61/
[1] Aleksandrov A.D. - Uniqueness theorems for surfaces in the large, Vestnik Leningrad Univ. Math., 13 ( 1958), 5-8. | MR | Zbl
[2] Almeida S.C. - Minimal hypersurfaces of S4 with non-zero Gauss-Kronecker curvature, Bol. Soc. Bras. Math. , 14 n° 2 ( 1983), 137-146. | MR | Zbl
[3] Almeida S.C. - Minimal hypersurfaces of a positive scalar curvature manifold, Math. Z., 190 ( 1975), 73-82. | MR | Zbl
[4] Almeida S.C. and Brito F. G. B. - Minimal hypersurfaces of S4 with constant Gauss-Kronecker curvature, Math. Z., 195 ( 1987), 99-107. | MR | Zbl
[5] Brito F.G. - Uma restriçāo para a curvatura escalar de hipersuperficies de S4 com curvatura media constante, IME-USP (Livre Docencia).
[6] Chern S.S., Do Carmo M., Kobayashi S. - Minimal submanifolds of the sphere with second fundamental form of constant length, Functional analysis and related fields ed. F. Browder. Berlin Heidelberg New York, Springer, 1970. | Zbl
[7] Guadalupe I.V., Tribuzy R. - Minimal immersions of surfaces into space forms, Rendiconti del Seminario Mathematico delia Universita di Padova, 73 ( 1985), 1-13. | Numdam | MR | Zbl
[8] Hsiang W.Y., Teng Z.H., Yu W.C. - New examples of constant mean curvature immersions of (2k - 1) spheres into Euclidean 2k-space, Ann. of Math., 117 ( 1983), 609-625. | MR | Zbl
[9] Hsiung C.C. - Some integral formulas for closed hypersurfaces, Math. Scand., 2 ( 1954), 286-294. | MR | Zbl
[10] Lawson H.B. Jr., - Local rigidity theorems for minimal hypersurfaces, Ann. of Math, 89 ( 1969), 187-197. | MR | Zbl
[11] Lawson H.B. Jr., - Complete minimal surfaces in S3, Ann. of Math., 92 (2) ( 1970), 335-374. | MR | Zbl
[12] Lawson H.B. Jr., - The unknottedness of minimal embeddings, Invent. Math., 11 ( 1970), 183-187. | MR | Zbl
[13] Meeks W., Simon L., Yau S.T.. - Embedded minimal surfaces, exotic spheres, and manifolds of positive Ricci curvature, Ann. of Math., 116 ( 1982), 621-659. | MR | Zbl
[14] Nomizu K. - Elie Cartan's work on isoparametric families of hypersurfaces, Proceedings of Symposia in Pure Mathematics, 27, 1975. | Zbl
[15] Peng C.K., Terng C. L. - The scalar curvature of minimal hypersurfaces in spheres. Mat Ann., 266 ( 1983), 105-113. | MR | Zbl
[16] Ramanathan J. - Minimal hypersurfaces in S4 with vanishing Gauss-Kronecker curvature, To appear. | MR | Zbl
[17] Ros A. - Compact hypersurfaces with constant scalar curvature and a congruence theorem, J. Differential Geometry , 27 ( 1988), 215-220. | MR | Zbl
[18] Wente H.C. - Counterexample to a conjecture of H. Hopf, Pacific J. Math., 121 ( 1986), 193-243. | MR | Zbl
Cited by Sources: