@article{TSG_1987-1988__6__81_0, author = {Deane Yang}, title = {$L^p$ pinching and compactness theorems for compact riemannian manifolds}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {81--89}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {6}, year = {1987-1988}, doi = {10.5802/tsg.59}, zbl = {0937.53501}, mrnumber = {1046260}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.59/} }
TY - JOUR AU - Deane Yang TI - $L^p$ pinching and compactness theorems for compact riemannian manifolds JO - Séminaire de théorie spectrale et géométrie PY - 1987-1988 SP - 81 EP - 89 VL - 6 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.59/ DO - 10.5802/tsg.59 LA - en ID - TSG_1987-1988__6__81_0 ER -
%0 Journal Article %A Deane Yang %T $L^p$ pinching and compactness theorems for compact riemannian manifolds %J Séminaire de théorie spectrale et géométrie %D 1987-1988 %P 81-89 %V 6 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.59/ %R 10.5802/tsg.59 %G en %F TSG_1987-1988__6__81_0
Deane Yang. $L^p$ pinching and compactness theorems for compact riemannian manifolds. Séminaire de théorie spectrale et géométrie, Volume 6 (1987-1988), pp. 81-89. doi : 10.5802/tsg.59. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.59/
[BK] Buser P., Karcher H. - Gromov's almost flat manifolds, Astérisque 81, 1981. | MR | Zbl
[CE] Cheeger J. Ebin D.G. - Comparison Theorems in Riemannian Geometry, New York : American-Elsevier, 1975. | MR | Zbl
[C] Croke C. - Some isoperimetric inequalities and eigenvalue estimates, Ann. scient. Éc. Norm. Sup., 13 ( 1980), 419-435. | Numdam | MR | Zbl
[G1] Gao L.Z. - Einstein manifolds I, preprint.
[G2] Gao L.Z. - Ln/2 curvature pinching, preprint
[G3] Gao L.Z. - Convergence of Riemannian manifolds, Ricci pinching, and Ln/2-curvature pinching, preprint.
[GW] Greene R.E., Wu H. - Lipschitz convergence of Riemannian manifolds, Pacific J. Math. | MR | Zbl
[GLP] Gromov M., La Fontaine J., Pansu P. - Structures métriques pour les variétés riemanniennes, Paris, Cedic, 1981. | MR | Zbl
[H] Hamilton R.S. - Three-manifolds with positive Ricci curvature, J. Diff. Geom., 17 ( 1982), 255-306. | MR | Zbl
[M] Min - Oo. - Almost Einstein manifolds of negative Ricci curvature, preprint | MR
[P1] Peters S. - Cheeger1's finiteness theorem for diffeomorphism classes of Riemannian manifolds, J. für die reine und angewandte Mathematik, 349 ( 1984), 77-82. | EuDML | MR | Zbl
[P2] Peters S. - Convergence of Riemannian manifolds, Compositio Math. | EuDML | Numdam | MR | Zbl
Cited by Sources: