@article{TSG_1987-1988__6__81_0,
author = {Deane Yang},
title = {$L^p$ pinching and compactness theorems for compact riemannian manifolds},
journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
pages = {81--89},
year = {1987-1988},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {6},
doi = {10.5802/tsg.59},
zbl = {0937.53501},
mrnumber = {1046260},
language = {en},
url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.59/}
}
TY - JOUR AU - Deane Yang TI - $L^p$ pinching and compactness theorems for compact riemannian manifolds JO - Séminaire de théorie spectrale et géométrie PY - 1987-1988 SP - 81 EP - 89 VL - 6 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.59/ DO - 10.5802/tsg.59 LA - en ID - TSG_1987-1988__6__81_0 ER -
%0 Journal Article %A Deane Yang %T $L^p$ pinching and compactness theorems for compact riemannian manifolds %J Séminaire de théorie spectrale et géométrie %D 1987-1988 %P 81-89 %V 6 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.59/ %R 10.5802/tsg.59 %G en %F TSG_1987-1988__6__81_0
Deane Yang. $L^p$ pinching and compactness theorems for compact riemannian manifolds. Séminaire de théorie spectrale et géométrie, Tome 6 (1987-1988), pp. 81-89. doi: 10.5802/tsg.59
[BK] , - Gromov's almost flat manifolds, Astérisque 81, 1981. | MR | Zbl
[CE] - Comparison Theorems in Riemannian Geometry, New York : American-Elsevier, 1975. | MR | Zbl
[C] - Some isoperimetric inequalities and eigenvalue estimates, Ann. scient. Éc. Norm. Sup., 13 ( 1980), 419-435. | Numdam | MR | Zbl
[G1] - Einstein manifolds I, preprint.
[G2] - Ln/2 curvature pinching, preprint
[G3] - Convergence of Riemannian manifolds, Ricci pinching, and Ln/2-curvature pinching, preprint.
[GW] , - Lipschitz convergence of Riemannian manifolds, Pacific J. Math. | MR | Zbl
[GLP] , , - Structures métriques pour les variétés riemanniennes, Paris, Cedic, 1981. | MR | Zbl
[H] - Three-manifolds with positive Ricci curvature, J. Diff. Geom., 17 ( 1982), 255-306. | MR | Zbl
[M] - Almost Einstein manifolds of negative Ricci curvature, preprint | MR
[P1] - Cheeger1's finiteness theorem for diffeomorphism classes of Riemannian manifolds, J. für die reine und angewandte Mathematik, 349 ( 1984), 77-82. | EuDML | MR | Zbl
[P2] - Convergence of Riemannian manifolds, Compositio Math. | Numdam | EuDML | MR | Zbl
Cité par Sources :

