On a parametrization of spaces of maximal framed representations
Séminaire de théorie spectrale et géométrie, Tome 37 (2021-2022), pp. 81-110.

This article is an extended version of the talk given by the author in the seminar Théorie Spectrale et Géométrie at the Institut Fourier in March 2022. We present some results of the PhD-thesis of the author [20] extended by several results from the articles [1, 3, 11]. We give a parametrization of the space of maximal framed representations of the fundamental group of a punctured surface into a Hermitian Lie group of tube type that can be seen as Sp 2 (A,σ) for a Hermitian algebra (A,σ). Using this parametrization, we count connected components of the space of maximal framed representations as well as the space of maximal (non-framed) representations.

Publié le :
DOI : 10.5802/tsg.383

Eugen Rogozinnikov 1

1 Korea Institute for Advanced Study 85 Hoegi-ro, Dongdaemun District, Seoul 02455 (South Korea)
@article{TSG_2021-2022__37__81_0,
     author = {Eugen Rogozinnikov},
     title = {On a parametrization of spaces of maximal framed representations},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {81--110},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {37},
     year = {2021-2022},
     doi = {10.5802/tsg.383},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.383/}
}
TY  - JOUR
AU  - Eugen Rogozinnikov
TI  - On a parametrization of spaces of maximal framed representations
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2021-2022
SP  - 81
EP  - 110
VL  - 37
PB  - Institut Fourier
PP  - Grenoble
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.383/
DO  - 10.5802/tsg.383
LA  - en
ID  - TSG_2021-2022__37__81_0
ER  - 
%0 Journal Article
%A Eugen Rogozinnikov
%T On a parametrization of spaces of maximal framed representations
%J Séminaire de théorie spectrale et géométrie
%D 2021-2022
%P 81-110
%V 37
%I Institut Fourier
%C Grenoble
%U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.383/
%R 10.5802/tsg.383
%G en
%F TSG_2021-2022__37__81_0
Eugen Rogozinnikov. On a parametrization of spaces of maximal framed representations. Séminaire de théorie spectrale et géométrie, Tome 37 (2021-2022), pp. 81-110. doi : 10.5802/tsg.383. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.383/

[1] Daniele Alessandrini; Arkady Berenstein; Vladimir Retakh; Eugen Rogozinnikov; Anna Wienhard Symplectic groups over noncommutative algebras, Sel. Math., New Ser., Volume 28 (2022) no. 4, 82 | DOI | MR | Zbl

[2] Daniele Alessandrini; Brian Collier The geometry of maximal components of the PSp(4,) character variety, Geom. Topol., Volume 23 (2019) no. 3, pp. 1251-1337 | DOI | MR | Zbl

[3] Daniele Alessandrini; Olivier Guichard; Eugen Rogozinnikov; Anna Wienhard Noncommutative coordinates for symplectic representations, Memoirs of the American Mathematical Society, 1504, American Mathematical Society, 2024 | DOI

[4] Marc Burger; Alessandra Iozzi; François Labourie; Anna Wienhard Maximal representations of surface groups: symplectic Anosov structures, Pure Appl. Math. Q., Volume 1 (2005) no. 3, Special Issue: In memory of Armand Borel. Part 2, pp. 543-590 | DOI | MR | Zbl

[5] Marc Burger; Alessandra Iozzi; Anna Wienhard Surface group representations with maximal Toledo invariant, Ann. Math., Volume 172 (2010) no. 1, pp. 517-566 | DOI | MR | Zbl

[6] Brian Collier; Nicolas Tholozan; Jérémy Toulisse The geometry of maximal representations of surface groups into SO 0 (2,n), Duke Math. J., Volume 168 (2019) no. 15, pp. 2873-2949 | DOI | MR | Zbl

[7] Jacques Faraut; Adam Korányi Analysis on symmetric cones, Oxford Mathematical Monographs, Clarendon Press, 1994 (Oxford Science Publications) | DOI | MR | Zbl

[8] Vladimir Fock; Alexander Goncharov Moduli spaces of local systems and higher Teichmüller theory, Publ. Math., Inst. Hautes Étud. Sci., Volume 103 (2006), pp. 1-211 | DOI | Numdam | MR | Zbl

[9] Peter B. Gothen Components of spaces of representations and stable triples, Topology, Volume 40 (2001) no. 4, pp. 823-850 | DOI | MR | Zbl

[10] Olivier Guichard; François Labourie; Anna Wienhard Positivity and representations of surface groups (2021) | arXiv

[11] Olivier Guichard; Eugen Rogozinnikov; Anna Wienhard Parametrizing positive representations (2022) | arXiv

[12] Olivier Guichard; Anna Wienhard Positivity and higher Teichmüller theory, European Congress of Mathematics, European Mathematical Society, 2018, pp. 289-310 | DOI | MR | Zbl

[13] Olivier Guichard; Anna Wienhard Generalizing Lusztig’s total positivity (2022) | arXiv

[14] Harald Hanche-Olsen; Erling Størmer Jordan operator algebras, Monographs and Studies in Mathematics, 21, Pitman Advanced Publishing Program, 1984 | MR | Zbl

[15] Sigurdur Helgason Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978 | MR | Zbl

[16] Nigel James Hitchin Lie groups and Teichmüller space, Topology, Volume 31 (1992) no. 3, pp. 449-473 | DOI | MR | Zbl

[17] Clarence Kineider; Eugen Rogozinnikov On partial abelianization of framed local systems (2022) (to appear in Mathematische Annalen) | arXiv

[18] François Labourie Anosov flows, surface groups and curves in projective space, Invent. Math., Volume 165 (2006) no. 1, pp. 51-114 | DOI | MR | Zbl

[19] Frederic Palesi Introduction to Positive Representations and Fock–Goncharov coordinates (2013) (working paper or preprint) | arXiv

[20] Eugen Rogozinnikov Symplectic groups over noncommutative rings and maximal representations, Ph. D. Thesis, Ruprecht-Karls-Universität Heidelberg, Deutschland (2020) | DOI

[21] Tobias Strubel Fenchel–Nielsen coordinates for maximal representations, Geom. Dedicata, Volume 176 (2015), pp. 45-86 | DOI | MR | Zbl

[22] Anna Wienhard An invitation to higher Teichmüller theory, Proceedings of the international congress of mathematicians 2018, ICM 2018, Rio de Janeiro, Brazil, August 1–9, 2018. Volume II. Invited lectures, World Scientific; Sociedade Brasileira de Matemática (SBM), 2018, pp. 1013-1039 | DOI | MR | Zbl

Cité par Sources :