This article is an extended version of the talk given by the author in the seminar Théorie Spectrale et Géométrie at the Institut Fourier in March 2022. We present some results of the PhD-thesis of the author [20] extended by several results from the articles [1, 3, 11]. We give a parametrization of the space of maximal framed representations of the fundamental group of a punctured surface into a Hermitian Lie group of tube type that can be seen as for a Hermitian algebra . Using this parametrization, we count connected components of the space of maximal framed representations as well as the space of maximal (non-framed) representations.
@article{TSG_2021-2022__37__81_0, author = {Eugen Rogozinnikov}, title = {On a parametrization of spaces of maximal framed representations}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {81--110}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {37}, year = {2021-2022}, doi = {10.5802/tsg.383}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.383/} }
TY - JOUR AU - Eugen Rogozinnikov TI - On a parametrization of spaces of maximal framed representations JO - Séminaire de théorie spectrale et géométrie PY - 2021-2022 SP - 81 EP - 110 VL - 37 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.383/ DO - 10.5802/tsg.383 LA - en ID - TSG_2021-2022__37__81_0 ER -
%0 Journal Article %A Eugen Rogozinnikov %T On a parametrization of spaces of maximal framed representations %J Séminaire de théorie spectrale et géométrie %D 2021-2022 %P 81-110 %V 37 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.383/ %R 10.5802/tsg.383 %G en %F TSG_2021-2022__37__81_0
Eugen Rogozinnikov. On a parametrization of spaces of maximal framed representations. Séminaire de théorie spectrale et géométrie, Tome 37 (2021-2022), pp. 81-110. doi : 10.5802/tsg.383. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.383/
[1] Symplectic groups over noncommutative algebras, Sel. Math., New Ser., Volume 28 (2022) no. 4, 82 | DOI | MR | Zbl
[2] The geometry of maximal components of the character variety, Geom. Topol., Volume 23 (2019) no. 3, pp. 1251-1337 | DOI | MR | Zbl
[3] Noncommutative coordinates for symplectic representations, Memoirs of the American Mathematical Society, 1504, American Mathematical Society, 2024 | DOI
[4] Maximal representations of surface groups: symplectic Anosov structures, Pure Appl. Math. Q., Volume 1 (2005) no. 3, Special Issue: In memory of Armand Borel. Part 2, pp. 543-590 | DOI | MR | Zbl
[5] Surface group representations with maximal Toledo invariant, Ann. Math., Volume 172 (2010) no. 1, pp. 517-566 | DOI | MR | Zbl
[6] The geometry of maximal representations of surface groups into , Duke Math. J., Volume 168 (2019) no. 15, pp. 2873-2949 | DOI | MR | Zbl
[7] Analysis on symmetric cones, Oxford Mathematical Monographs, Clarendon Press, 1994 (Oxford Science Publications) | DOI | MR | Zbl
[8] Moduli spaces of local systems and higher Teichmüller theory, Publ. Math., Inst. Hautes Étud. Sci., Volume 103 (2006), pp. 1-211 | DOI | Numdam | MR | Zbl
[9] Components of spaces of representations and stable triples, Topology, Volume 40 (2001) no. 4, pp. 823-850 | DOI | MR | Zbl
[10] Positivity and representations of surface groups (2021) | arXiv
[11] Parametrizing positive representations (2022) | arXiv
[12] Positivity and higher Teichmüller theory, European Congress of Mathematics, European Mathematical Society, 2018, pp. 289-310 | DOI | MR | Zbl
[13] Generalizing Lusztig’s total positivity (2022) | arXiv
[14] Jordan operator algebras, Monographs and Studies in Mathematics, 21, Pitman Advanced Publishing Program, 1984 | MR | Zbl
[15] Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978 | MR | Zbl
[16] Lie groups and Teichmüller space, Topology, Volume 31 (1992) no. 3, pp. 449-473 | DOI | MR | Zbl
[17] On partial abelianization of framed local systems (2022) (to appear in Mathematische Annalen) | arXiv
[18] Anosov flows, surface groups and curves in projective space, Invent. Math., Volume 165 (2006) no. 1, pp. 51-114 | DOI | MR | Zbl
[19] Introduction to Positive Representations and Fock–Goncharov coordinates (2013) (working paper or preprint) | arXiv
[20] Symplectic groups over noncommutative rings and maximal representations, Ph. D. Thesis, Ruprecht-Karls-Universität Heidelberg, Deutschland (2020) | DOI
[21] Fenchel–Nielsen coordinates for maximal representations, Geom. Dedicata, Volume 176 (2015), pp. 45-86 | DOI | MR | Zbl
[22] An invitation to higher Teichmüller theory, Proceedings of the international congress of mathematicians 2018, ICM 2018, Rio de Janeiro, Brazil, August 1–9, 2018. Volume II. Invited lectures, World Scientific; Sociedade Brasileira de Matemática (SBM), 2018, pp. 1013-1039 | DOI | MR | Zbl
Cité par Sources :