This paper is a shortened version of the recent article Examples of compact Einstein four-manifolds with negative curvature [11] written in collaboration with J. Fine (ULB). Its content was presented by the author at the Séminaire de Théorie Spectrale et Géométrie in Grenoble in December . In [11], new examples of compact, negatively curved Einstein manifolds of dimension have been obtained. These are seemingly the first such examples which are not locally homogeneous. The Einstein metrics we construct are carried by a sequence of 4-manifolds , previously considered by Gromov and Thurston [13], and obtained as ramified coverings of closed hyperbolic 4-manifolds. Our proof relies on a deformation procedure. We first find an approximate Einstein metric on by interpolating between a model Einstein metric near the branch locus and the pull-back of the hyperbolic metric from the base hyperbolic manifolds. We then perturb to a genuine solution to Einstein’s equations, by a parameter dependent version of the inverse function theorem.
@article{TSG_2017-2019__35__129_0, author = {Bruno Premoselli}, title = {Negatively curved {Einstein} metrics on ramified covers of closed four-dimensional hyperbolic manifolds}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {129--161}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {35}, year = {2017-2019}, doi = {10.5802/tsg.367}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.367/} }
TY - JOUR AU - Bruno Premoselli TI - Negatively curved Einstein metrics on ramified covers of closed four-dimensional hyperbolic manifolds JO - Séminaire de théorie spectrale et géométrie PY - 2017-2019 SP - 129 EP - 161 VL - 35 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.367/ DO - 10.5802/tsg.367 LA - en ID - TSG_2017-2019__35__129_0 ER -
%0 Journal Article %A Bruno Premoselli %T Negatively curved Einstein metrics on ramified covers of closed four-dimensional hyperbolic manifolds %J Séminaire de théorie spectrale et géométrie %D 2017-2019 %P 129-161 %V 35 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.367/ %R 10.5802/tsg.367 %G en %F TSG_2017-2019__35__129_0
Bruno Premoselli. Negatively curved Einstein metrics on ramified covers of closed four-dimensional hyperbolic manifolds. Séminaire de théorie spectrale et géométrie, Volume 35 (2017-2019), pp. 129-161. doi : 10.5802/tsg.367. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.367/
[1] Michael T. Anderson Dehn filling and Einstein metrics in higher dimensions, J. Differ. Geom., Volume 73 (2006) no. 2, pp. 219-261 | MR | Zbl
[2] Thierry Aubin Équations du type Monge–Ampère sur les variétés kählériennes compactes, Bull. Sci. Math., Volume 102 (1978) no. 1, pp. 63-95 | Zbl
[3] Richard H. Bamler Construction of Einstein metrics by generalized Dehn filling, J. Eur. Math. Soc., Volume 14 (2012) no. 3, pp. 887-909 | DOI | MR | Zbl
[4] Marcel Berger Les variétés riemanniennes 1/4 pincées, C. R. Acad. Sci., Paris, Volume 250 (1960), pp. 442-444 | Numdam | Zbl
[5] Gérard Besson; Gilles Courtois; Sylvestre Gallot Entropies et rigidité des espaces localement symétriques de courbure strictement négative, Geom. Funct. Anal., Volume 5 (1995) no. 5, pp. 731-799 | DOI | Zbl
[6] Olivier Biquard Polycopié on Differential Geometry and Global Analysis (2007) (Unpublished lecture notes, available at https://webusers.imj-prg.fr/~olivier.biquard/dgga2007.pdf)
[7] Simon Brendle; Richard Schoen Manifolds with 1/4-pinched curvature are space forms, J. Am. Math. Soc., Volume 22 (2009), pp. 287-307 | DOI | MR | Zbl
[8] Peter Buser; Peter C. Sarnack On the period matrix of a Riemann surface of large genus, Invent. Math., Volume 117 (1994) no. 1, pp. 27-56 (With appendix by J. Conway and N. Sloane) | DOI | MR | Zbl
[9] PIOTR Chruściel; Walter Simon Towards the classification of static vacuum spacetimes with negative cosmological constant, J. Math. Phys., Volume 42 (2001), pp. 1779-1817 | DOI | MR | Zbl
[10] Vincente Cortés; Arpan Saha Quarter-pinched Einstein metrics interpolating between real and complex hyperbolic metrics (2017) (https://arxiv.org/abs/1705.04186)
[11] Joel Fine; Bruno Premoselli Examples of compact Einstein four-manifolds with negative curvature, J. Amer. Math. Soc., Volume 33 (2020) no. 4, pp. 991-1038 | DOI | MR | Zbl
[12] C. Robin Graham; John M. Lee Einstein metrics with prescribed conformal infinity on the ball, Adv. Math., Volume 87 (1991) no. 2, pp. 186-225 | DOI | MR | Zbl
[13] Mikhael Gromov; William P. Thurston Pinching constants for hyperbolic manifolds, Invent. Math., Volume 89 (1987) no. 1, pp. 1-12 | DOI | MR | Zbl
[14] Larry Guth; Alexander Lubotzky Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds, J. Math. Phys., Volume 55 (2014) no. 8, 082202 | MR | Zbl
[15] Mikhail G. Katz; Mary Schaps; Uzi Vishne Logarithmic growth of systole of arithmetic Riemann surfaces along congruence subgroups, J. Differ. Geom., Volume 76 (2007) no. 3, pp. 399-422 | MR | Zbl
[16] Wilhelm P.A. Klingenberg Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung, Comment. Math. Helv., Volume 35 (1961), pp. 47-54 | DOI | MR | Zbl
[17] Nohirito Koiso Non-deformability of Einstein metrics, Osaka J. Math., Volume 15 (1978), pp. 419-433 | Zbl
[18] CLAUDE LeBrun Einstein metrics and Mostow rigidity, Math. Res. Lett., Volume 2 (1995), pp. 1-8 | DOI | MR | Zbl
[19] John M. Lee Fredholm Operators and Einstein metrics on conformally compact manifolds, Memoirs of the American Mathematical Society, 864, American Mathematical Society, 2006 | Zbl
[20] Plinio G. P. Murillo Systole of congruence coverings of arithmetic hyperbolic manifolds (2016) (https://arxiv.org/abs/1610.03870) | Zbl
[21] Henrik Pedersen Einstein metrics, spinning top motions and monopoles, Math. Ann., Volume 274 (1986), pp. 35-59 | DOI | MR | Zbl
[22] William P. Thurston The Geometry and Topology of Three-Manifolds (1980) (Lecture notes distributed by Princeton University, available at ftp://www.geom.uiuc.edu/priv/levy/incoming/bayer/gtm3.pdf/6a.pdf)
[23] Peter Topping Lectures on the Ricci Flow, London Mathematical Society Lecture Note Series, 325, Cambridge University Press, 2006 | MR | Zbl
[24] Shing-Tung Yau On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I, Commun. Pure Appl. Math., Volume 31 (1978) no. 3, pp. 339-411 | Zbl
Cited by Sources: