@article{TSG_2002-2003__21__9_0, author = {H\'el\`ene Davaux}, title = {La $K$-aire selon {M.} {Gromov}}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {9--35}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {21}, year = {2002-2003}, doi = {10.5802/tsg.330}, zbl = {1067.53030}, mrnumber = {2052821}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.330/} }
TY - JOUR AU - Hélène Davaux TI - La $K$-aire selon M. Gromov JO - Séminaire de théorie spectrale et géométrie PY - 2002-2003 SP - 9 EP - 35 VL - 21 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.330/ DO - 10.5802/tsg.330 LA - fr ID - TSG_2002-2003__21__9_0 ER -
Hélène Davaux. La $K$-aire selon M. Gromov. Séminaire de théorie spectrale et géométrie, Volume 21 (2002-2003), pp. 9-35. doi : 10.5802/tsg.330. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.330/
[Bau91] H. Baum, An upper bound for the first eigenvalue of the Dirac oprator on compact spin manifold. Math. Z., 206-3 ( 1991), 409-422. | MR | Zbl
[BK78] J.-P. Bourguignon et H. Karcher, Curvature operators: pinching estimates and geometrie examples. Ann. Sci. École Norm. Sup. (4), 11-1 ( 1978), 71-92. | Numdam | MR | Zbl
[BK81] R. Buser et H. Karcher, Gromov's almost flat manifolds. Société Mathématique de France, Paris, 1981. | Zbl
[Dav02] H. Davaux, K-aire et courbure scalaire des variétés riemanniennes. Thèse de l'Université Montpellier II, 2002.
[GHL90] S. Gallot, D. Hulin et J. Lafontaine, Riemannian geometry. Springer-Verlag, Berlin, second edition, 1990. | MR | Zbl
[GL80a] M. Gromov et H. Blaine Lawson, The classification of simply connected manifolds of positive, scalar curvature. Ann. of Math. (2), 11-3 ( 1980), 423-434. | MR | Zbl
[GL80b] M. Gromov et H. Blaine Lawson, Spin and scalar curvature in the presence of a fundamental group, J.Ann. of Math. (2), 111-2 ( 1980), 209-230. | MR | Zbl
[GL83] M. Gromov et H. Blaine Lawson, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Inst. Hautes Études Sci. Publ. Math., 58 ( 1984), 83-196. | Numdam | MR | Zbl
[Gro81 ] M. Gromov, Structures métriques pour les variétés riemanniennes. CEDIC, Paris, 1981. | MR | Zbl
[Gro96] M. Gromov, Positive curvature, macroscopic dimension, spectral gaps and higher signatures, In Functional analysis on the eve of the 21 st century, Vol. II (New Brunswick, NJ, 1993), pages 1-213. Birkhäuser Boston, MA, 1996. | MR | Zbl
[Hus94] D. Husemoller, Fibre bundies, Springer-Verlag, New York, third edition, 1994. | MR | Zbl
[Kar77] H. Karcher, Riemannian center of mass and mollifier smoothing. Comm. Pure Appl. Math., 30 5 ( 1977), 509-541 | MR | Zbl
[LM89] H. Blaine Lawson et M.-L. Michelsohn, Spin geometry, Princeton University Press, Princeton, NJ, 1989. | MR | Zbl
[Ste57] N. Steenrod, The Topology of Fibre Bundles, Princeton University Press, Princeton, NJ, 1957. | MR | Zbl
Cited by Sources: