@article{TSG_2001-2002__20__101_0,
author = {Lionel B\'erard Bergery and Xavier Charuel},
title = {A generalization of {Frenet's} frame for non-degenerate quadratic forms with any index},
journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
pages = {101--130},
year = {2001-2002},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {20},
doi = {10.5802/tsg.327},
zbl = {1032.53009},
language = {en},
url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.327/}
}
TY - JOUR AU - Lionel Bérard Bergery AU - Xavier Charuel TI - A generalization of Frenet's frame for non-degenerate quadratic forms with any index JO - Séminaire de théorie spectrale et géométrie PY - 2001-2002 SP - 101 EP - 130 VL - 20 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.327/ DO - 10.5802/tsg.327 LA - en ID - TSG_2001-2002__20__101_0 ER -
%0 Journal Article %A Lionel Bérard Bergery %A Xavier Charuel %T A generalization of Frenet's frame for non-degenerate quadratic forms with any index %J Séminaire de théorie spectrale et géométrie %D 2001-2002 %P 101-130 %V 20 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.327/ %R 10.5802/tsg.327 %G en %F TSG_2001-2002__20__101_0
Lionel Bérard Bergery; Xavier Charuel. A generalization of Frenet's frame for non-degenerate quadratic forms with any index. Séminaire de théorie spectrale et géométrie, Tome 20 (2001-2002), pp. 101-130. doi: 10.5802/tsg.327
[B-G] . Géométrie différentielle, Presses Universitaires de France, Paris ( 1987). | MR | Zbl
[D] , Éléments d'analyses, Tome lV, Gauthier-Villars, Paris ( 1971). | MR | Zbl
[D- B] - , Lightlike submanifolds of semi-Riemannian manifolds and applications, Kluwer Academic Publishers, Dordrecht, Vol. 364 ( 1996). | MR | Zbl
[D.J.] - , Geometry of null cuwes, Math.J.Toyama University 22.95-120 ( 1999). | MR | Zbl
[Sp] . A comprehensive introduction to differemial geometry, Publish or Perish ( 1975). | Zbl
[Y-C. W] , Frenet formulas for curves in Real, Complex and Quaternionic Euclidian spaces, Differential Geometry in honor of K. Yano, Kinokuniya, Tokyo, 525-541 ( 1972). | MR | Zbl
Cité par Sources :

