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1. Introduction

1.1. Statement of the problem

Let us consider a curve c: I — \kn
t I being an open interval of R, and Kn furnished

wilh its Euclidian structure.

We suppose the curve c to be regular, in the sensé that the itérative derivatives
c ( 1 ) ( r ) , . . . , c ( n ) (O are independent vectors for ail t € /. Under this assumption, it is
well known that one may build, through a Gram-Schmidt orthonormalization process, a
particular frame associated to the curve c, called the Frenet's frame (for details, cf. [Sp]
for example), and deduce from that curvature and torsion.

In fact, we may restrict our hypothesis of regularity into a weaker one, which we
shall call r-regularity (for 1 ^ r ^ n): c{ l î(f) , . . , ,c{ r )(O are independent, and
c ( r + 1 ) ( r ) e Fr(t) : = ( c i l ) ( t ) c(r)(r)>, Vf e L

Indeed, it is clear that, in this case, the subspace Fr(t) is independent of t ( we can
see this using Taylor formulae), and thus, we may identify Fr with Rr, so that we are led
to the former case.

Our aim in this article is to generalize this construction of a canonical frame field
associated to each sufficiently regular curve in R" furnished with an arbitrary non de-
generate quadratic form.

REMARK 1.1 Some constructions were already studied in particular cases (see for
example [Y-CW] and [DJ, chapter 13 problem 8 p. 329). Also, some authors introducé
auxiliary datas along the curve in order to manage with isotropic vectors (see for example
[D-B] chapter 3 and [D-J]). Hère, we want to focus on a "canonicaT construction, without
any auxiliary choices, which applies to any Minkoswski space and more generally to any
pseudo-Riemannian manifold (see chapter 9).

1.2. Some définitions and notations

Let us consider a curve c: I - R", where Rw is furnished with a fixed non-degene-
rate quadratic form ( , >. In ail this paper, for any t e ƒ, we will dénote by h-(t) the
space generated by the itérative derivatives c ( l î(f ) , . . . , c{k)(t), and by g^(r) the Gram's
determinant of these vectors, Le. the determinant of the (k,k) matrix l(c{l)(t)fc

{^ (t))t

i . j e {1,.. . ,*}).

DÉFINITION 1.2 A curve will be said "r-pseudo-regular" if

1. is r-regular, Le. Fr-\ £ Fr = Fr+\

2. for all k < r, the function gk is either positive, identically zero, or négative.

From now on, the curve c will always be assumed pseudo-regular.
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We may then define a strictly increasing finite séquence (aie) (with ÜQ = 0), corre-
sponding to the successive integerssuch that gQk * 0.

We dénote by b^ := a^+i - &k- Then, for any integer i from 1 to bk - 1, we must have
gaK+i = 0, so that the spaces Fak+i are degenerate for the restricted form.

We dénote by Kak+i the kernel of the restricted form on FOk+i.

We will prove in the next chapter that we have only 3 possibilities

dim Kak+i + 1

dim Kak+i

dim Kak+i - 1

= Kak+i+i with respectively dim Kak+i+\ = -

It allows us to define a séquence (tf*) by supposing that

• we have a strictly increasing séquence KOk+\ £ Kak+2 S

• this séquenceismaximal, le. Kajc+dk $ Kak+dk+\,so

o r Kak+dk i

Now, it is clear that we have a direct sum décomposition

Fak+i = Fak © ^ + î V I ^ I < d*.

kernel

Finally, the last notations we need in this article are the following:

o we dénote by km^ the unique integer such that the last term of the séquence (a*)
*s ^max ' z-e ^max satisfies gi = 0 for any integer i from afCmax + 1 to r, and göfcmax * 0.

o by convention, we will dénote by bakxm the integer r - a^^.

Let us remark that:

1 • fcmax may be equal to 0 (with our convention go = 1). In this case, where all sub-
spaces Ft are degenerate, the curve c is said totally isotropic.

2. gr may be nul! or not. In fact, it is clear that gr * 0 <=> r = öjtmax. Then we will
have to distinguish two cases, according to r = ajtmax or not.

1.3. Statement of the main resuit

With the notations above, we will prove that bu = 2dk + 1, and that we have

More precisely, we wil! obtain the following séquence:

Kak+\ S * • • S Ktk+dk = Kak+dk+\
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FinaUy, we are able to construct a basis adaptée! to the moving flag flcfiC"*c
Fri canonical in a sensé that we will précise in chapter 3, given by th& following theorem:

THEOREM 1.3 Given a r-regular, pseudo-regular, curve c: I — Rn, and a non-degene-
rate quadraxic form ( , > oniR", there existe a unique moving basis {vi(t),...,vr(t)} on
Fr(t) wiîh the following properties:

1- {v\{t),...,vr(t)} is adapted to the flag F[ C • • • C Fr, le. Fi(t) is generated by
{v\(t),..., Vi(t)} for any integer i from 1 tortandanyt € I

2. the(rtr) matrix U ofthe restriction of{, ) toFr with respect to the basis {v\,..., vr}
is

U =

0 o\

where % = (-l)dletC7fc, ê - = ±1 is the sign ofgak^(&>k)~^ (remark that gak * 0
forO ^ k < fcmax - \), Uk the (bk, b/J matrix defined by

( 0

O - ]

o
1

o

o
- 1

o

and 0r-akmax is the null matrix of type (r - a ^ , r -

3. themovingbasis {vx(f),..., vr(t)} satisfies V' = AV, Le.
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Ao LCQ 0

LCQ AI Lc\

0 Ie , •••

Q \

V o o r / \vr/
with h = fcmax - 1, and the (rj) matrix A admits a block-decomposition which main
diagonal is made with:
(i) A, is a (bi,bO matrix, bi = 2rf,- + 1, with a décomposition

where

• Tt is the (di, rf, + i; matrix with

/O 1
0 0

7} =

0 . . .
1 0

0 \
. . . O

o ... o

0̂ 0 1,

• T,; is the (di + 1, di) matrix with

n o 0\

0 '•• 0 ... 0

1
0/

• D , is a (di +1,<
form

ii + \) matrix depending on di fünc

( °
0
0
0
0

• • .

/
0

Vu

0
/
0

Y.-.2
• • •

0

Yi,rf,-2
0
/
0

• • •

0

0
/
0

. . •

tionsYir

0
Yi.dy-l

0
. . .
. . .
. . .

o >
Y,-,d,

0
. . .
* * .
0

o )
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(H) F is a (r -
(Y = 1, . . . , r -

, r - a^^) matrix depending on r
- 1J on I, in theform

/o
o

1
o

Qi

o
1

0\
0

Notice that there is no matrix F if (and only if) a^^ = r.

(iii) • le,- = x,-Ii, whereLi is the unique (bi, bi+\) matrix

/O O

0 . . .
1 O

0\

O

0/

yciisa positive function on I.

i = -€j€i+] >cXi* whereTï is the unique (bi+\, bO matrix

f O O ...

- 1 functions

O . . . 0;

and the function Xi is the same as in the matrix Lei.

2. A preliminary study of kernels

Let us recal] that for 1 ̂  i < fc* - 1, the space Fak+i is degenerate for the form (, >(

with kernel Kak+i. Sinceiv2fc+I-+I = FQk+i e <c(öt+I+ï)>, itis clear that we have either

dim Kak+i+\ = dim Kak+i + 1 , dim Kak+i+\ = dim Kajc+i, or dim Kak+i+\ = dim Kak+i ~~ !•

More precisely, we have the following result:

LEMMA 2.1 EitherKOk+i c orKak+i = Kak+i+i orKak+i D Kak+i+\.

Proof If c(fl*+i+1) is orthogonal to Fak+i, we then have either <c(fl*+I"+1), c(a*+i+1)> =
0, in which case Kak+M = Kak+i e <c(-l*+i+1)>f or | c

( ö * + / + 1 ) | 2 * 0, and then *:ûJt+I- =
Kak+i+\. Now, if c ( û*+ i + 1 ) is not orthogonal to Fak+i, let z e *rflJt+,+i. We have z = j / +
Àc ( û * + I > 1 \ w i t h y e Fak+i,and\ e R. We have (j/ + Ac(fl*+I+1),A:> = OVx e FÖJt+i+ï;
particulary, for * e ^ fc+I-, we obtain <Àc(û*+/+1), JC> = 0. Thus, ifc{ak+i+}) is orthogonal
to Kak+i, we have ATâJt+I- £ Kak+i+\. If c(f l*+I+1) is not orthogonal to J ^ + i , the equality
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<Àc(fli+l'+1),jt> = 0, VJC € Kûk+i implies A = 0. In thiscase,wededucez = y+Ac(fl*+I+1) =
y e Fak+i and zsatisfies (z,x) = OVx e F^+z+j D i^fc+l-. Thusz = y e -Kifc+i, and then

Let us suppose that, for i = 1 , . . . , d* - 1, we have dim *Tûjfc+I+i = dim Kak+i + 1, in
otherwords, that ATÖJt+] S ATÛJL+2 £ • • • £ ÂT^*^, and suppose besides that d* is the first
index i for which the kernel KQk+i is not increasing.

Then we must have either AT^+^+i s ATflJt+^ or K^+^+i c ATfljt+^. Weknowthat
we may write Fûfc+I- = Fajc © /TÛJk+I- for f = 1 until djt, and we will dénote by e^ :=
Tr/c^*'(c(flfc+l))Pwhere7T/CûJfc+': FflJt+l- - Kak+i is the natural projection for that direct sum.

Let us notice that e^i f Kak+i-it since otherwise, we would have c{°k+l) e FOk e
Kak+i-} = Fak+i-i - which contradïcts the hypothesis on the flag (Fy).

LEMMA 2.2 Thefamily {e^\,..., e^ f̂c} ^ ^ basis ofKak+dk -

Proo/ This family is free. Indeed, if ̂ T A/c^/ = 0 with coefficients Aj not all nil, let
i=i

m - l
m the greatest index isuch that Am * 0. We then have \me/c;m = - JT ^I^A-I € ^flfc+m-i»

i=i
so ei-m G ATûjt+m_], which is impossible. Thus, thefamily {^ i , . . . ,^ -^} formsabasis
of Kak+dk ( since it is clear that dim Ka)c+dk = d^). D

LEMMA2.3

ak
Proof. Let us write c{"k+dk) under the form c{a^+dk) = ehtdk + ̂  «/c ( 0 . Then we have

r = l

<^e f c i >. Nowf
i

.«w)' = °- S o <c(Oi+^+1),efel> = -{e,.,^,^.,.). But

=o

<-, e Fak+i+l : indeed, we may write c ( ^ + 0 = efc/ + £ 0 ;c
( / ) , and then e .̂,

/i

We deduce that (c ( a^+^+ 1 ) , ek;i) = 0V i = 1 , . . . , dk - 1- On the other hand, we have
<eM A ' <W =0tso{et

k.idk,ekzdk) = 0. Itresults that <c(fl*+d*+1),eWjt> = 0. D

Using this lemma together with Lemma 2.1, we get

COROLLARY2.4

Then we may complete our family {e^,..., e^fc} into a basis of Fak+dk+\, adding a
vector ek,dk+\ defined in the following way: the quotient space Fak+dk+\ /Kak+dk is not de-
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generate (wequotientthespaceF^+^+i byitskernel),andcontainsFak+dk/ATajt+^,which
is also non-degenerate.

Thus, the orthogonal space ofFOk+dk fKak+dk inside Fak+dk+\ fK<zk+dk is a supplemen-
tary subspace of dimension 1, and we get the orthogonal décomposition

k+dk © (Fak+dkfKak+dk) •

This supplementary subspace gives us a vector e ^ + i (unique modulo the kernel
Kai+dk)t that we may choose unitary (Le. ( e ^ + i , eA-^+i) = ±1, and we dénote it by
e*"), andsuch thatthefamily {^-i,-..,^-jfc+i} isabasisof Fak+dk+\.

Remarks.

1. The vector e ^ + i is not isotropic, otherwise it should belong to the kemel
Kak+dk+i, and we would then have dim Kûk+dk+\ = dim Kajc+dk + 1, which is not
the case.

2. The quotient space FÖJt+1 /Fak is of type (dk, dk + 1) or (dk + 1, dk). Thus, ek is the
signature of this quotient space.

3. In order to fix the ideas, we may consider the vector ektdk+i as the unitary projec-
tion of the vector c

{ak+dk+l) onto the quotient space (

Lemma 2.3 may be generalized in the following:

LEMMA 2.5 Wehave

ebi) =O,V1 ^ m ^ dk,Vi = \t.

Proof. Lemma 2.3 tells us that the resuit is true for m = 1. Suppose the lemma
true up to m - 1,2 ^ m ^ dk. Remark that, since e'k;i e Fak+i+\, we may décompose

ak i+l

ek-i = E ^ciI) + E v/c fc / l wlth ak + 2 < ak + i + 1 < ak + dk + 2 - m ^ ak + d^.

But for any / ^ ak, {ef
k.v c

{l)) + (ete,f c
(/+îï> = <gfeK-,c(f))f = 0f and so,

=0

Thus, the vector ek]i is orthogonal to the space Fak, and therefore, since the space F&k is
i+i

non degenerate, we have A/ = 0, V1 < / ^ ak, We obtain éhi = ^ v/e^/1 and we imme-
/]/=]

diately deduce, according to our induction hypothesis, that (c{ak+d*+m~l), e'^) = 0.



A generalization of Frenet's frame ... 109

It follows, according to the equality

=0 =0 by hypothesis

D

LEMMA 2.6 VI ^ i < dk - 1, there is a function Q such that ehi = e^i+i +

Moreover, there are somefonctions &\,..., <<?dk, <5 * such that et
hd -

Proo/ We have seen, in the proof of Lemma 2.5, that TTF"k (e'^) — 0t 1 ^ i
Tffl*: iwhereTTffl*: is the projection/va^+z+i - FflJt.

Let us then Write c(û*+i) = efcl- + £ ^{ l )c ( / ) . We obtain, for 1 < i ^ rf* - 1, 4 / =

_ g 0(-rc(/) ^ g 0(Oc(i+i) = e^.+] _ ^ 0 ^ + C| where C € ftt.

Thus, sinceTT^Ce^-) = 0, e^- = ek-i+i - ^ e ^ . Th us we obtain the resul t with

For f = rf^., the result is clear since TrFfl*(e^.rf ) = 0. More precisely, we may write

^8kek-tdk^ + J2 6lew + ^cpic^. Then the equality

implies, as above, that

L k

LEMMA 2.7 VI ^ m ^ rf* + 1, wehave(c{a*<+dk+m)
tek-tdk+2-m) * 0.

The result is true for m=l: indeed, we may write c(ö*+d*+lï =

A.-/ + ök.eL-dk+}t and then, if (c(flfc+^+1),^;djfc+i) = 0, we must have ö* = 0, so that

ciak+dk+i) e p a j t +^, a contradiction.

Suppose the result true for an integer m ^ d^le. (c*fl*+d*+ro\ efc^+2-m) * 0.

We have

=0 according to lemma 2.5
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In other words, if m ^ 2 we have

Now, according to Lemma 2.6 and the induction hypothesis, this is equal to -
ek-dk+2- m > - which is not null.

If m = 1, weobtain

-(ciak+d*+]),5kek.iâk+l

0.

Remark that Lemmas 2.5 and 2.7 imply that

l-m» VI ^. m ^ dk

To end this section, let us prove the following lemma relating the signs ek and €k.

LEMMA 2.8 The sign ek of {e^dk+\9 ek~dk+i) is related to the sign ek of the quotient
}(gak)~

} by the formula ek = (-l)dkek.

Proof

Let us dénote by B[
k
nt] the basis of FQk defined by the récurrence

•B[™\] = B^ i n t ] u {nF"i<ak+\c{ak+l))}ifak+} = ak + 1, Ie. ifbk = 1

We dénote by g[ i n t ] the Gram's determinant of the basis B[
k
nt\ Then, an easy com-

putation shows that

From Lemma 2.6, we may deduce that eh^ = 5^:ek;(jk+i + K, for some function K on

> so that < ^ ) , 4fifcï> = 5 l< eWt+i' ^ 4 + i ) - Consequently,

e :=

(**)
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where the last equality results from équation ( * ).

Now, since the matrix P{k) of change of basis from the basis {c{l\..., c(flfcï} of FOk to
the basis fi[!nT] is an upper triangular matrix with coefficient 1 everywhere on the main
diagonal, and since we clearly have (P U ) ) f Gram{c ( 1 ) , . . . , c{k))P{k) = Gram{£[ i m ]},
wededucethat[det(PUÎ)]2gajL = g[intJ,iegflJt s g[ i n t ] .

Thus, the équation ( * * ) gives us the resuit. D

3. The geometrical fundations of the construction

3.1. First step: when the kernel grows

Since the space Fük+2dk+\ is not degenerate, we have dim Fak+2dk + dim F

dim Fak+2dk+] = ak + 2dk + 1; in other words, dim F ^ & J * * 1 = L

Thus, the space F^^d *+1 *s generated by a vector «jt;i, necessarily null since
Fak+2dk is degenerate. Moreover, let us remark lhat n^i € -Fûfc+i. Indeed, recall that if
w e w r i t e e h t l = n ^ ' H c 1 * * * » ) , w e h a v e e f c , e Kajc+l c Kajc+2 c ••• c Kajc+dk =

i. so e^) e i^+^+t*+1» and o n the other hand, the Lemma 2.5 ensures us that
to) =OV1 i m ^ tft.sothatet, €

Since the space ^+2d^*+ 1 h a s dimension 1, there exists a smooth function
satisfying/7^-i = A^je^-i, which naturallyimplies n^-i € Fak+\.

Remark now that the equalities

o dim Fak+2dk-\+ dim FakltdkX
l == dim Fak+2dk+\

dim ^ + 2 ^ +dim ^ + 2 ^ - 1 n Kak+2dk imply

m a i a i m / V . L O W . _ i — ^ — cum J V , . J . O ^ . _ , . i n u s w e a e a u c e u i a i ^ . - L O ^ _ _ 1 = r ^ . ^ j _j =

Therefore, we maychoose a vector «jt;2 such that/Tajt+2dt-i = (n^]> ©

Let us remark that « ^ is a priori the most natural candidate, since VI ^ m

=0 =0

The above construction may be pursued in the same way for the spaces ^+2^4-1»
(for any integer m from 1 to djc), and leads us to introducé some vectors n^t2t..., n^dt+i
which are nothing but the successive derivatives of w*;1.

Remark nevertheless that for m ^ dk - 1, the previous computations show that

l l d l = 1 + dim ^ + 2 ^ - m + l = dim Kak+2dk-m, SO that
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t f c k - m t which forces the introduced vectors n^\,..., nk)dk * belonging
to a kernel, to be isotropic.

On the contrary, for m = dki we have Kak+dk+i s Ktk+dk> so dim i

dim Fa-^
d^ = 1 + dim Kak+dk+l > dim K.k+dk-

Thus the space F^d^^ contains strictly the kernel Kak+dkt and the introduced
vector ni-dk+\ (which we will dénote by n* in the next sections), generating a supple-
mentary space of Kük+dk in ^ + ^ 2 d * + 1 . is not isotropic.

Moreover, it is important to note that, since n^ e Fak+\, we have n^j = n[!~l) e
Fak+i for 1 ^ i ^ dk + 1, so that n̂ -f € iTafc+i- for f < rf^-. In particular, for i ^ rfjt, it is
clear that {n^i *• •> nk,i) is a basis of Kak+i* and thus

Finally, Iet us remark that, by construction, it is clear that we have

+\) f o r m <

and

Before beginning the second step, we may wonder what choice of vector nk;\ seems
the most judicious, in other words, knowing that one may write n^ = ^{k)^k,\ for some
function A(^ (r), the. problem is to find some function A(jt> which makes the choice of
the vector n^ the most natural one.

In view of what we have just seen above, the only function A(*) which seems to

impose itself is the function which would allow to normalize the non-isotropic vector

Wji-^+i, ie. the unique positive function such that we have {n{
h^\ n^*'} — €k

9 where

ek = ±1 is the sign of {eic;d+\>ek,dk+i)- Since n{^] = A(jt)e[^fc) + >c for some vector

>r in the kemel Kak+dk, it is clear that ( n g 1 , ^ 1 ) = tf^ff'^ff)- Now, recall
that we have seen in the previous secüon that {e[^k), e^)2dk+l = (-Ddkgak^ (gak)~

l-

Thus. we deduce that the function K(k) which we are looking for must satisfy A ^

In other words, we are led to the following

Formula3.1:

If besides, we impose \ik) > 0, by analogy with the Frenet's frame in Rieman-
nian Geometry (where this last condition détermines in some sorts the orientation of
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the frame), the function A(jt> is then defined in a unique way by the previous formula.

3.2. Second step: when the kernel decreases

lt is important to note that F f l " g * = KaL+dk c F f l "£?* + 1 . Indeed, we have

dim Fa^di- \+ ~ dk + 2. Our first aim is to find a priori a vector u^dk snch that

±ak+2dk+\

Then we must choose some vector «A.-^, orthogonal to the space Fak+dk-\, but not be-

longing to the space i^+^2 d*+ 1 (*.& such that ( u j ^ , ni-dk) * 0); moreover, it seems
natural. it possible, to want to choose Uk-dk isotropic.

For those reasons, the previous strategy, which would have consisted to take for vec-
tor uictdk the vector n[^ t+1), does not seem to be the most judicious anymore, since now,

the kernel Kai+dk-i d°es not coincide with the space Fj^^?**1 anymore. In particular,
we lose the argument which, in the first step, ensured us that the introduced vectors n^j
were indeed isotropic.

This may be expressed by the fact that the hyperbolic plane generated by the vectors
-tdk and «[-*+lï is furnished with a metric of the form

f O -ek\
,-ek K )

for some function K e ï?00 (ƒ,!!&) (taking into account the fact that

- • * > •

= o

Then, it seems more judicious to account for the "obstruction of the vector w*. * to be

isotropic" by defining the vector w*^ so that we have n{^+l) = U£dk + Y^dfcwjt;dt,where

YA.rfjL is the function - j K = ( - I J ^ ' ^ K .

The hyperbolic plane Jtfc,dk generated by the vectors 7 1 ^ and ujtfdt is then fur-
nished with the metric

oj
For the same reasons, we may hope to end naturally the whole process by introduc-

ingfor 2 ^ / < dk some vectors ui-dk+\-ù such that
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o (uL',dk+ï-i, nh.dt+m-i) = 0 , V2 ^ m < i

O <"Jt;rft+l-i. Uk;dk+]~j) = 0 , VI ̂  j ^ î

Wjt+l-i = ukr,dk+2-i

. We have dim Kak+dk-M = * - * + 2 < dk + i - 1 = dim F ^ + S - * ? ' a n d t h u s

• We have uk;dk+l.i e Fak+dk+i+} VI < i ^ rf*.

We thus have obtained a décomposition of the space FOk+} = Fajc+2dk+i in the sum

Fak^ = Fak e {«A-^+I) e^- ,1 e • • • e ^ ^ ,

each of the hyperbolic planes Jf^i - {n^i, WJI-,) beingfurnishedwithametricintheform

o (-D'-'

4. The construction of our basis

Let us suppose that we have already built a basis âSk of Fajc, satisfying the conditions
given by the Theorem 1.3 (with fc possibly 0 and the conventions OQ = 0, ft = {0}, g0 = 1,
and <5?o = 0 ) .

We want to build &>k+i on FOk+y

4.1. The case where k <

In this case, there exists an integer ak+\ ï Then we wil] complete the basis of Fük into
abasisof FflJt+r

First, if öfc+j = uk + 1, **.e. if -Rẑ +i is not degenerate, then the orthogonal space

has dimension lf and FflJt+i = FQk © Fa\
ak+l.

Then we may complete the family SSk with some unitary vector generating the space
i:

fl";a;:+1
Jandwedefine A(A;)(r) > Oto be the function such that the vector

has norm e*. Note that we clearly have A ^ e * = gQk (gflJk+1 )" J .

Now, if flfc+i * ak + 1, we must make a more subüe analysis.

Let nk-\ := A^e^ i a vector generating the kernel Kak+], \{k) being the smooth func-
tion defined by

I A(jt) > 0.
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Let /îfci := n{^l) Û\e(i - l)-thderivativeof nk;l for 2 ^ i < dk, and put irk := nj^*'.

Recall that the function A(it> has been chosen in order to have

PROPOSITION 4.1 Tliefamily ffik u {n^i , . . . , n*-,^, nk] ùa basis of the space Fak+(jk+i

Proof. Since ^ is a basis of Fak which is non-degenerate, and since the vectors
F . . . , n*;dfc, TTjt) are ail orthogonal to Fak, it is clear that it is sufficient to prove that

the family {n f c l , . . . , nk;dk, nk} is free.

dk dk 2

Suppose that ̂  oan^i^^ni; = 0. Then theequality 53 ainh,i + P'nk = Oimplies
/=] ' ' i=i

that ^ = 0.

Nowt suppose that the coefficients « ] , . . . , (Xdk are not ail null. Denoting by p the
p p-i

greatest index zsuchthata, * 0, wehave^ « I « ^ Î = 0, andthus n^p = -7j-

i. which is absurd, since n^p may be written n^p = Çftj^p + %p, with Çp €

Therefore, we have «] = • • • = oidk = 0. D

It remains to complete this family into a basis of Fak+1.

PROPOSITION 4.2 For each integer ifrom 1 to dk, there exists a vector u^f uniquely
defined modulo the kernel Kak+i- ], satisfying the followingconditions:

(1) u^-i is orthogonal to the space Fajc

(2) (uk-i,nhtj)

(3) {w^^/) = (

(4) {uk-itTTk) = 0

(5) <ukzi,uhtJ)

Proof. Let us write

/=0

We choose below the coefficients mj, £i,Vi,j so that u^j satisfies the conditions
(1) , . . . , (5) in the proposition.
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(1) V 0 < / < k- 1,V1 < j < di

j « 0.

So we choose/i/fJ- = (-l)-'€;vJ<c(a*+2d*+2~/), «;;y>.

• d/fr.f.Tr,) = v/<c(-*+2*+2-fl,7r,> + (-l)d'e,ïi = 0.

So we choose Ç/ = (-l)d'-1£/v,-(c(a*+2<**+2~°,Tr/).

• <«fci. «/;7> = v,-(c(-*+M*+2-fl. u/;j> + ( -D^- 'c imj = 0.

So we choose n;,y = (-l)-/C;v,-<c(a*+w*+2-I')
t uhj).

(2) • VI ^ ; < i - 1, (uk-i,nk-j) =vi(c
iak+2dk+2~i),nk.tj) = 0accordingtoLemma2.5

• Vi + 1 < ƒ ^ dfc, ( « w . #ifcy> = v ^ c ' 0 ^ 2 ^ 2 " 0 , nisj) + ( -1)^etHkj = 0.

So we choose fj*,,- = (-l)-'€/tvI-<c(<I*+M*+2-I"), n^j).

(3) (uw. nki) = vJ(c (a*+2^+2-' ), ntef> - (-1 )'-'Ét.

So we choose v,- = ^ Z i ^ ^ .

Recall that (c^t+2^+2-0^ n f c^ ^ 0 accOrding to Lemma 2.7.

0.

So we choose ft. = (-l)di~1etv«(c(ai+2d*+2-l),7TJt>.

. v i +1 < ; ^ d t l <«fel-, «t;7> = v,<c(B*+M*+2-i), ut;;> + ( - D ^ ' c t n t j = o.

So we choose r\ktj = (-l)-'ejfcVI<c(a*+2fl'i+2-'), uh>i).

dk dk

d,

/=o \

v,(uki. c1'**2***2-*) + (-1) ' -

i-o \;=i

+ (-
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/=0 \

= 0

Notice that the last équation defines the coefficient r)kti. D

Thus we have succeeded in completing our initial basis dS^ of Fajc into a basis SSu u
{wji-i » - • •, nk-dk, nk, uk-dk,..., wjt;i} of FOk+l t where the vectors m-j are defined modulo
the kernel Kak+i- \, and the metric has the following matrix in that basis:

o
\ 0 . . . . . . 0

In other words, we have obtained a matrix

0 - £

o\

O €k

-ek O

O

(-\)dk€k 0

oj

4.2. The case where A:

Recall that we have denoted byr the unique integer such that Fr_i £ Fr = Fr+\.
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If r - akmax, then the construction is finished at level km**- we have the basis &ÏT of
Fr satisfying the conditions of Theorem 1.3.

If r > akmsxt then for any integer i between a ^ ^ + 1 and r, the space Fi must be
degenerate.

Furthermore, we have the following result:

LEMMA 4.3 Ifak = akmax < r, thenKak+l S Kak+2 S • • • S Kr

Proof. Suppose the result false. Then, with our previous notation for dkt this means
thatr ^ ak + dk + 1.

Then we may complete the basis S&k of Fük into a basis of Frt adding vectors
{"A-i.. - -. nh,dk> T*k, uk-tdkt..., WA-ajt+2^-r+2}. in the same way that we have done in the
previous section. It is clear that we must have (c{ö*+^*+lï,7Tfc> * 0, otherwise, we should
have c{ai+dk+l) e Fak+dk, and consequently, Fak+dk = Fak+dk+\* which would imply
r ^ ak + dk.

Remark that the proof of Lemma 2.7 is still true as long as one may start the induc-
tion. We thus conclude that <c(fl*+rf*+m), n ^ - ^ - m ) * 0 for any integer m with 2 ^ m ^
rfjL + 1. Inparticular, wehave {c(r+1)

Frtjt;öfc+2£/jk-r+i) * 0. But, sincec ( r + 1 ) € i>+i = Frtwe
have (c[r+]), nk-tak+2dk-r+\ ) = 0- (Remark that ak + 2dk- + 1 > r, otherwise there would
exist an integer ak+} defined by ak+} := ak + 2dk + 1, which would give a contradiction
with the fact that k = fc^)- E

Thus we obtain a basis of i> adding to the family âSk some vectors
ru,-,]. - • •. nk',r-akmsx, where nk;i e Kak+i - ATajt+/_i.

In this basis, the metric is

•(-l)*e0C/0

In conclusion, we may say that the process described in this paper must then come
to an end either with a non-degenerate final space Fr, or with a degenerate space Fr, in
which case, the residual kernel is constituted with vectors of type "

5. The matrix of derivatives

5.1. The case where Jfc <

In this section, we are going to choose explicitly the vectors n ,̂-, which were previ-
ously defined only modulo the kernel Kak+i-\. We choose them so that the basis â$k u

. . . , nk-dk,nk, uk-dk, •>, wjt;i} satisfies the conditions (3) given in Theorem 1.3.



A genera] iz at ion of Frenet's frame... 119

• By construction, it is clear that we have rihi = n^j+i for any integer / from 1 to dk.

• Since nk e FÛJt+^fc+2, we may Write

;=] /=o \j=i

o V 0 < / ^ * - l , V l £ ; ^ rff,

Then we deduce that «|°j = 0 for any integer j from 1 to d\.

o VO^ / ^ ifc-1,

<Tr[., 7T/> = -{7Tjt f 7T,'> = - <7T^ W/;d/ + Y f f d | n W | > = 0 .

Thus, we have ^ 0 ) = 0.

o V 0 ^ / < J b - l . V l ^ j ^dh

(n'k,ui.j) = -(nk, uhj) = 0

since uj;j. € Faj+2dj+3-j £ fa?+2dr+2 £ i:at_1+2rfJt.1+2 = fûfc+i. So, we have

y]°j=OVl ^ j ^ di.

o (TT'k,nk-idk) = -(nk,n'k.dk) = -(nktnk) = ( - l )*" 1 ** .

y = 0.

Thus( JŜ
O) = 0.

Therefore, nf
k = w w + ^ y[

Reca]] that the vector uktdk is defined modulo the kerne] Kak+dk-\\ this leads
us to substitute to the vector u^ the vector ü^-j t defined by

E y[°/ wfej - a n d t h e n ' denoting by Yktdk := y[°i , we obtain:
;=1 "

JL-^ being defined in this way, let us compute vr^d .
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For this, let us Write

Jt-1 / à, d,
+ E E «''Mi+p'n'+J2

;=o \;=i ;=i
o V 0 < / ^ Jt - 1, VI < j ^ dx,

' n'i.j > = 0.

Thus, a,j = 0V0 < / < Jt - 1. VI ^ ; < dh

rr'i > = 0 .

s,^/ = 0.

Thus, y / . ; = 0V0 ^ / ^ k - 1, VI ^ j ^ dh

Thus, o^-^ = 0.

1.

=0
Thus, yfcidjfc = 0.

From all these computaüons,itrésultethatu'Wjt = WjL-̂ _1+Yjî JtT7-jt+ 53 Yk.jnic.j

Reminding that the vector uiCidk_l is defined modulo the kernel Kak+dk-2> w e a r e

dk-2
led to substituteto the vector w^-^j the vector ujtj^j := u^ak ] + Yl Ykjntj*

and then, putting Yjt^-i :" y w r i , w e obtain:

v'h,dk = uMjt-i
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• Now, suppose that, for i = dk - 2,. . . , 1, we have made a particular choice, for any
h-\

i + 1 ^ h ^ dkt of vector uk;h + Yl Ykjrifcj, that we will dendte by uk;h, satisfying
7=1

the following équation

uJt;fc = uh,h-l + Yk,hnk-h+\ + Yk.h-\nk;h-\> VI ^ h

Let us then write

fc-I

/=0 \j=\ j-1

o exactly the same computations as above show easily that all coefficients
<xij>PhYi,j equaJ toO, for any integer 1 from 0 tok-1, and any integer j from
1 torf/.

o V / + 1 < ; ^ dkt

Thus, akj = 0.

^üi;i+l' " ^ ^ = -tekii+l' n'k\Ù
Thus, we deduce that akt/ = 1.

Thus, pk = 0.

= O except for i + 1 =

So, we have ykj = 0V i + 3 ^ j ^ dk.

Thus, y f c i ï + 2 = YjbP/+i.

=0

Thus, y u + i = 0.
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i
Therefore, we may Write u' t -+1 = uhJ + Y*,,» nk.i+2 + E j

M

But, the vector u^,- being defined modulo the kernel /fflJt+I--i, we may substitute to
i-i

this vector the vector uk;i := u*;i+ 53 yAr,yw^y»sothat. denotingby Yjt,,- := yjt,i,we

obtain:

Finally, it remains us to compute the derivative u'hl. According to whether the
space iva^j+i is degenerate or not, we are going to introducé a new vector x. which
will generate the kernel (in the degenerate case), or the orthogonal space i i^ f
(in the non-degenerate case).

More precisely, we choose the vector x to be

o the null vector if r = a^+i

o the unitary projection of the vector c ( ö^1 + l ï on the space Ffl^f+I+I if ^«fc+1

is not degenerate, Le. if 0,^+2 =

\(k+])eic+};\, if Fûjt.j+i is degenerate, where ejt+i;i is the projection of the vec-
tor c{ö*+1+1) onto the kernel Kak+1+\, and A(jt+n is the function defined by

[Afjt-Ki) > 0

if k + 1 * fcmax» °r some function which we will define in the next section if
k + 1 = fcmax-

* / d\ dj \

Let us then Write u'̂ j = xfcx + E Z «/.j^/;j + Pi^i + E y/-;"/;; •
/=o\;=i 7=1 /

o The same computations as we have made above show that ail coefficients are
equal to 0, except x*,

o < ^

T h u s , y w

O (l)'hvUk-l

for some function K on R.

Therefore, we obtain ü'^j =



Relatively to the basis
derivatives looks like

rAo LCQ

LCQ A] LC:

0 Lei

A generalization of Frenet's frame... 123

- • * nk;dkt TTk* ukr,dk> • • • > ^Jt;l } * the matrix Of

0\

o

o

o

o
o o
0 1 0 0

o

Yt.i

where the last column represents the coefficients of the vector x € Fak+l+\ -

In other words, we have obtained a matrix in the form

'Ao LCQ 0 0 x

LCQ A I L c \ "•-

0 I c i X ••.

Ajt

5.2. The case where k =

lf r = fljLmax, there is nothing more to do. If ö^max < rt exactly in the same way as we
have done above, we put n * ^ ! = A(ihïax) e ^ ^ i , and for any integer i from 2 to r -

Here, the only problem lies in the choice of the function Mk^^)* noting that the
previous formula does not apply anymore, since now, there does not exist a non-zero

In fact, the most natura] choice of Afj^) is given by the following proposition.
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PROPOSITION 5.1 Thereexists a unique choice offonction X^^) such that

An easy computation shows that

1=2

Moreover, since ^J .* m a x ' € ifr+i = -Kr. we may write it as ]T v/eJjV\j, for some

€ Kr-i <=> /VfA^.jV/'-a. „„ + (r — ̂ -ma3t)Ari: , = 0.

Therefore, Afj^^j is the unique solution of the above differential équation with ini-
tial condition A(jtmax> (0) = 1. D

From this, it results that for the curves for which the final space Fr is degenerate, we
may introducé a third kind of functions Ci, such that the matrix of derivatives admits a
décomposition

LCQ 0

AI Lc}

0 Le, '- .

0 . . . 0 Lc^-2 ^Jtmax-l ic*xnax-l ° " • " • °
0 0 0 1 0 . . . 0

: : 0 0 1
{0 0 ft Cr-i-'w 0
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le. the matrix

A =

Leo 0

AI Lc\

0 Lc\

with h = - 1.

0 \

0

Ah Lch

0 TJ

6. The change of basis

Notice that one may get our new basis {v\,..., vr] of Fr from the canonical basis
{c ( 1 ) , . . . , c{r)} by an upper triangularmatrix, the main diagonal of which is

Besicles, we have the following resuit relating the functions A//) and x,-:

PROPOSITION 6.1 j V 0
+» [VO - 21 ƒ

* First case: if a/+1 * a, + 1.

In this case, x = «/+i;i = A(l+1)e,+1;1. We have Ü;.;1 = xJA(l-+1)ei+1;1 + Y ^ . n ^ -
É/-16/X,--in(_i;i. But c(B«*I+1) = e,-+i;i +y,wherey € ft.+l. So, u;.;1 = XiA(i+1)c

(û'+1+1) + z
(1), for some vector z € Fa^v Furthermore, we knowr looking at the change of basis
above, that we may Write ui;1 = \{î)C

{ai+l) + v,wth v e Ji.+1_i.Thus(uJ ;1 = A(,-)C(ûl+1+1) +
w (2), with w G Fai+l.

Equations (1) and (2) together with the fact that c ( l î , . . . , c(fll+1+1) are independent
give us the resuit.

• Second case: if ai+i = a,- + 1.

The above arguments are still valid; we just have to Write now
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Using Formula 3.1, we may deduce

Formula6.1: x? = \ga

7. Parametrization of curves

The study that we have led in this paper allows us to give a natural parametrization
to each pseudo-regular curve c in the following way:

PROPOSITION 7.1 Given any ÎQ in I,

L If\\c{l)\\2 * 0, le. ifax = 1, there existe a unique parametrization y = c ° qp such
that

'(Y{1KY{1)) = ± 1

<P(O) « h
q>' > 0

x * 0 and a\ * 1 (Le. | | c ( 1 ) | I 2 = 0),there exists a unique parametrization
y = c o qp such that

<p(0) =

çp' > 0

= 0, z.e z/c 15 totally isotropic, there existe a unique parametrization y =
c o çp such that

( r + 1 ) e F ,

<p' > 0

cp'(O) = l

Proo/

1. If | | c ( 1 ) | | 2 * 0, le. if ai = 1, then, putting y = co g?, the vector y(1) = cp'.c{l) is
unitaryifandonlyif g?' = ±A(o) by définition ofA(0).

The only solution with g?' > Ois then <p' = À(0) withinitial condition <p(0) = fc-

2. If | \c{l) 112 = 0, and there exists an integer ÛJ such that gai * 0, then it is easy to
show that we have the following resuit (where we omit the proof):

LEMMA 7.2 Let y = c o çp a parametrization ofthe curve c, and let us dénote byg[c^
(respectively g[^) the Granis determinant ofFül relatively to the curve c (respectively to the
curve y).
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Then wehave^ = q>f2hog{
a
c?.

Consequently, we may deduce

' 2 fco , r c ] , _ ,
= 1 ~ <p'

<=> <p' = A(o) if we choose g?' > 0

o/2*° =

3. If c is totally isotropic, i.e if km^ = 0, then the proposition (5.1) gives us a unique

function À(o) such that the vector woi := Amjeb-i = A(o)C(1) satisfies i 0;1 r - 1

[ A ( O ) = l
Therefore, ifweputy = c o ç?with <p' = \{0)t weobtain

= <p'c(lï

and thus, y{r+1) € i>_lf and cp'(O) = 1. D

Remarks.

(1) Those parametrizations may be seen in a natura] way as parametrizations "by
arc-length', in the sensé that they are nothing else but the parametrizations y = c © çp
which giveusy (1) = v\.

In other words, for the curve y, the new function A(0) is identically 1, so that the
tnangular matrix of change of basis from the basis {y ( 1 ) , . . . ,y ( r î} to the basis [v\,...9vr]
begins with a block of coefficients 1 on its main diagonal.

(2) In the two first cases, the parametrization may be called unitary, since it allows
us to norm the first non-isotropic vector that we meet.

In the third case, the parametrization is given by a function A(o) satisfying a first
order differentia] équation. That is why this parametrization may be called an affine
parametrization.

Note that the result we have obtained gives a generalization of the well-known result
that any null geodesie has an affine parametrization, since a null geodesie is nothing but
apseudo-regular curve, l-regular, with k^^ = 0.

(3) The functions which appear in the generalized Frenet's frame depend on the
parametrization of the curve. We cal] generalized curvatures the functions which appear
in the generalized Frenet's frame for the good parametrization of the curve that we have
defined in this chapter.
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8. Remarks on the invariants >ckt Yki and çu-

As for Frenet's frames, the curve is characterized by its (generalized) curvatures, i.e.
the invariants Y/,,-, >c\t ç\. More precisely:

THEOREM8.1 Let yc^ > 0, Y^- and ç^ be smooth real fonctions, and (ak)k^r a se~
quence of integer. Jliere exists a curve for which the subspaces FOk are nor degenerate, and
having the functions Y*,,, x*, ç^ for (generalized) curvatures. Furtherniore, any two such
curves differ by an isometry (Le. a translation followed by an element of the orthogonal
group).

The proof of this proposition works exacüy in the same way as in the Riemannian
case, so we omit it (for details, cf. [Sp] second volume p. 1.43).

Notice also that the invariants yc^ and Yjt.i are not exactly of the same nature. To
see that, it is sufficient to remark that the functions >** are positive by définition (see
proposition 6.1), whereas the functions Y*,; have, a priori, no sign.

As an example, let us consider the curve c of R u defined by

— R13
c :

T ( - r 3 + ' . 2 r 2 , - r 3 - t)
4 3 3

We have:

= (2M,2r)

c{3){t) = (2,0,2)

Hence, the vectorsc(1), c ( 2 \ c(3) are clearly independent.

Respectively to this basis, the Gram's matrix of c is

0 0 -1>
0 1 0

^-1 0 0

In this example, we have (with our usual notations):

OQ = 0, ax = 3, do = 1, «o;i = c{l), 7r0 = c(2).

Since (c(2) )' = c(3) + 0.c(1), we get YOfi = 0.

9. Generaiizing the construction to arbitrary pseudo-Riemannian
manifolds

Let (M, g) be any n-dimensional pseudo-Riemannian manifold. Let c: I - Af be a
smooth curve in M, where I is some open interval in R, containing 0.
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The tangent space TXM at c(0) = x e M is given with a non-degenerate quadratic
form gx. For any t € I, we may consider the parallel transport r(f): TXM — TC(t)M
along c with respect to the Levi-Civita connection D of g. At any point c(t), the curve c
admits a velocity vector c(r) € Tc(t)M, and iterated derivatives:

Then c{k)(t) := T(f)"1Z)(A:"lîcarevectorsin TXM, and we may build a unique curve
y: I - 7iMsuchthaty(0) = Oandy{k)(t) = c{k)(t).

Now, we may translate our construction to c by applying it to the curve y. For that,
we dénote by F£(t) (respectively F£(t)) the space generated by {c(r),.. . ,Du*"1)c(f)î
(respectively{c(1)(r)f...fc

(lr)(f)}).

DÉFINITION 9.1 372e curve c is said "pseudo-regular" if

1. c is r-regular, Le. Frij S Fr
c = Fr

c
+l

2. for any integer k < r, the Gram's determinant ofF£(t), Le. the determinant of the
(kf k) matrix ((DU)c(t), D{&c(t))9i,j€. {0,. . . , k - 1}), is eitherpositive, identicallyzero,
or négative.

Since the parallel transport r(t) is a linear isometry, we may deduce that

PROPOSITION 9.2 Vie curve c is pseudo-regular if and only if the curve y is.

Therefore, if the curve c is pseudo-regular, our previous work allows us to build a
canonical frame {v\,...fvr} inside TXM, associated to the curve y. Consequently, if we
put Wi(t) := r(t)(vi(t)), we obtain amovingframe {w\,...t wr] for the curve c, with
the same invariants Yt. j , xi, ç^ (which is a staightforward conséquence of the fact that
Ddiw.it) ~ T(r)(y;.(f))sinceT(r)islinear).
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