@article{TSG_2000-2001__19__53_0, author = {Nalini Anantharaman}, title = {D\'enombrement de g\'eod\'esiques ferm\'ees, sous contraintes homologiques}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {53--65}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {19}, year = {2000-2001}, doi = {10.5802/tsg.318}, zbl = {1049.37019}, mrnumber = {1909076}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.318/} }
TY - JOUR AU - Nalini Anantharaman TI - Dénombrement de géodésiques fermées, sous contraintes homologiques JO - Séminaire de théorie spectrale et géométrie PY - 2000-2001 SP - 53 EP - 65 VL - 19 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.318/ DO - 10.5802/tsg.318 LA - fr ID - TSG_2000-2001__19__53_0 ER -
%0 Journal Article %A Nalini Anantharaman %T Dénombrement de géodésiques fermées, sous contraintes homologiques %J Séminaire de théorie spectrale et géométrie %D 2000-2001 %P 53-65 %V 19 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.318/ %R 10.5802/tsg.318 %G fr %F TSG_2000-2001__19__53_0
Nalini Anantharaman. Dénombrement de géodésiques fermées, sous contraintes homologiques. Séminaire de théorie spectrale et géométrie, Volume 19 (2000-2001), pp. 53-65. doi : 10.5802/tsg.318. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.318/
[A1] N. Anantharaman, Precise counting results for closed orbits of Anosov flows, Ann. Sci. E.N.S. (4) 33,33-56, 2000, no. 1. | Numdam | MR | Zbl
[A2] N. Anantharaman Counting geodesics which are optimal in homology, à paraître dans Erg. Th. Dyn. Syst. | Zbl
[BL] M. Babillot, F. Ledrappier, Lalley's theorem on periodic orbits of hyperbolic flows, Erg. Th. Dyn. Syst. 18, 17-39, 1998. | MR | Zbl
[D] D. Dolgopyat, On decay of correlations in Anosov flows, Ann. of Math (2) 147,357-390, 1998, no. 2. | MR | Zbl
[F] A. Fathi, Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens, C.R. Acad. Sci. Paris, Série 1324 ( 1997), 1043-1046; | MR | Zbl
A. Fathi, Solutions KAM faible et barrières de Peierls, C.R. Acad. Sci. Paris, Série 1325 ( 1997), 649-652; | MR | Zbl
A. Fathi, Orbites hétéroclines et ensemble de Peierls, C.R. Acad. Sci. Paris Sér. I Math. 326 ( 1998), no. 10, 1213-1216; | MR | Zbl
A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik C.R. Acad. Sci. Paris Sér. I Math. 327 ( 1998), no. 3, 267-270. | MR | Zbl
[H] H. Huber, Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen (I), Math. Ann. 138,1-26, 1959, (II), Math. Ann. 142, 385-398, 1961, (III), Math. Ann. 143, 463-464, 1961. | MR | Zbl
[KS] A. Katsuda, T. Sunada, Closed orbits in homology classes, Publ. Math. IHES 71, 5-32, 1990. | Numdam | MR | Zbl
[K] Y. Kifer, Large deviations, averaging and periodic orbits of dynamical Systems, Comm. Math. Phys. 162, 33-46, 1994. | MR | Zbl
[L] S. Lalley, Closed geodesics in homology classes on surfaces of variable negative curvature, Duke Math. J. 58, 795-821, 1989. | MR | Zbl
[Mn] R. Mane, Generic properties and problems of minimizing measures of Lagrangian Systems, Non linearity 9 (2), 273-310, 1996. | MR | Zbl
[Mr] G. Margulis, Applications of ergodic theory for the investigation of manifolds of negative curvature, Funct. Anal. Applic. 3, 335-336, 1969. | MR | Zbl
[Ms] D. Massart, Stable norms of surfaces: local structure of the unit ball at rational directions, Geom. Funct. Anal. 7, 996-1010, 1997. | MR | Zbl
[Mt] J. Mather, Action minimizing invariant measures for positive definite Lagrangian Systems, Math. Z. 207, 169-207, 1991. | MR | Zbl
[PP| W. Parry, M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolics dynamics, Astérisque 187-188, 1990. | MR | Zbl
[PS] R. Phillips, R. Sarnak, Geodesics in homology classes. Duke Math J. 55, 287-297, 1987. | MR | Zbl
[P] M. Pollicott, Homology and closed geodesics in a compact negatively curved surface, Amer. J. Math. 113, 379-385. 1991. | MR | Zbl
[S] R. Sharp, Closed orbits in homology classes for Anosov flows, Erg. Th. and Dyn. Syst. 13, 387-408, 1993. | MR | Zbl
Cited by Sources: