We focus on a geometric invariant associated to any noncompact Riemannian manifold : the asymptotic curvature ratio introduced by Gromov. We study how it interacts with the topology of the underlying manifold with other geometric constraints such as positive asymptotic volume ratio, nonnegative (Ricci) curvature and finiteness of the fundamental group (at infinity).
On s’intéresse ici à un invariant géométrique associé à toute variété riemannienne non compacte : le rapport asymptotique de courbure. On étudie son influence sur la topologie de la variété sous-jacente en présence d’autres contraintes géométrico-topologiques portant sur le volume asymptotique, la positivité de la courbure (de Ricci) et/ou la finitude du groupe fondamental (à l’infini).
@article{TSG_2011-2012__30__47_0, author = {Alix Deruelle}, title = {Rapport asymptotique de courbure, courbure positive et non effondrement}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {47--75}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {30}, year = {2011-2012}, doi = {10.5802/tsg.290}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.290/} }
TY - JOUR AU - Alix Deruelle TI - Rapport asymptotique de courbure, courbure positive et non effondrement JO - Séminaire de théorie spectrale et géométrie PY - 2011-2012 SP - 47 EP - 75 VL - 30 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.290/ DO - 10.5802/tsg.290 LA - fr ID - TSG_2011-2012__30__47_0 ER -
%0 Journal Article %A Alix Deruelle %T Rapport asymptotique de courbure, courbure positive et non effondrement %J Séminaire de théorie spectrale et géométrie %D 2011-2012 %P 47-75 %V 30 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.290/ %R 10.5802/tsg.290 %G fr %F TSG_2011-2012__30__47_0
Alix Deruelle. Rapport asymptotique de courbure, courbure positive et non effondrement. Séminaire de théorie spectrale et géométrie, Volume 30 (2011-2012), pp. 47-75. doi : 10.5802/tsg.290. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.290/
[1] Michael T. Anderson Short geodesics and gravitational instantons, J. Differential Geom., Volume 31 (1990) no. 1, pp. 265-275 http://projecteuclid.org/getRecord?id=euclid.jdg/1214444097 | MR | Zbl
[2] Shigetoshi Bando; Atsushi Kasue; Hiraku Nakajima On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. Math., Volume 97 (1989) no. 2, pp. 313-349 | DOI | MR | Zbl
[3] I. Belegradek; G. Wei Metrics of positive Ricci curvature on vector bundles over nilmanifolds, Geom. Funct. Anal., Volume 12 (2002) no. 1, pp. 56-72 | DOI | MR | Zbl
[4] Lionel Bérard-Bergery Sur de nouvelles variétés riemanniennes d’Einstein, Institut Élie Cartan, 6 (Inst. Élie Cartan), Volume 6, Univ. Nancy, Nancy, 1982, pp. 1-60 | Zbl
[5] Simon Brendle; Richard Schoen Sphere theorems in geometry, Surveys in differential geometry. Vol. XIII. Geometry, analysis, and algebraic geometry : forty years of the Journal of Differential Geometry (Surv. Differ. Geom.), Volume 13, Int. Press, Somerville, MA, 2009, pp. 49-84 | MR | Zbl
[6] Dmitri Burago; Yuri Burago; Sergei Ivanov A course in metric geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, Providence, RI, 2001 | MR
[7] Yu. Burago; M. Gromov; G. Perel’man A. D. Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk, Volume 47 (1992) no. 2(284), p. 3-51, 222 | DOI | MR | Zbl
[8] Huai-Dong Cao Limits of solutions to the Kähler-Ricci flow, J. Differential Geom., Volume 45 (1997) no. 2, pp. 257-272 http://projecteuclid.org/getRecord?id=euclid.jdg/1214459797 | MR | Zbl
[9] G. Carron Some old and new results about rigidity of critical metric, ArXiv e-prints (2010)
[10] Jeff Cheeger; Tobias H. Colding Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. (2), Volume 144 (1996) no. 1, pp. 189-237 | DOI | MR | Zbl
[11] Jeff Cheeger; Tobias H. Colding On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., Volume 46 (1997) no. 3, pp. 406-480 http://projecteuclid.org/getRecord?id=euclid.jdg/1214459974 | MR | Zbl
[12] Jeff Cheeger; Kenji Fukaya; Mikhael Gromov Nilpotent structures and invariant metrics on collapsed manifolds, J. Amer. Math. Soc., Volume 5 (1992) no. 2, pp. 327-372 | DOI | MR | Zbl
[13] Jeff Cheeger; Detlef Gromoll The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry, Volume 6 (1971/72), pp. 119-128 | MR | Zbl
[14] Jeff Cheeger; Detlef Gromoll On the structure of complete manifolds of nonnegative curvature, Ann. of Math. (2), Volume 96 (1972), pp. 413-443 | MR | Zbl
[15] Jeff Cheeger; Gang Tian Curvature and injectivity radius estimates for Einstein 4-manifolds, J. Amer. Math. Soc., Volume 19 (2006) no. 2, p. 487-525 (electronic) | DOI | MR | Zbl
[16] C.-W. Chen; A. Deruelle Structure at infinity of expanding gradient Ricci soliton, ArXiv e-prints (2011)
[17] Bennett Chow; Peng Lu; Lei Ni Hamilton’s Ricci flow, Graduate Studies in Mathematics, 77, American Mathematical Society, Providence, RI, 2006 | MR | Zbl
[18] Alix Deruelle Géométrie à l’infini de certaines variétés riemanniennes non compactes, Université de Grenoble I (2012) (Masters thesis)
[19] Günter Drees Asymptotically flat manifolds of nonnegative curvature, Differential Geom. Appl., Volume 4 (1994) no. 1, pp. 77-90 | DOI | MR | Zbl
[20] J.-H. Eschenburg Comparison theorems and hypersurfaces, Manuscripta Math., Volume 59 (1987) no. 3, pp. 295-323 | DOI | MR | Zbl
[21] J.-H. Eschenburg; V. Schroeder; M. Strake Curvature at infinity of open nonnegatively curved manifolds, J. Differential Geom., Volume 30 (1989) no. 1, pp. 155-166 http://projecteuclid.org/getRecord?id=euclid.jdg/1214443288 | MR | Zbl
[22] Kenji Fukaya A boundary of the set of the Riemannian manifolds with bounded curvatures and diameters, J. Differential Geom., Volume 28 (1988) no. 1, pp. 1-21 http://projecteuclid.org/getRecord?id=euclid.jdg/1214442157 | MR | Zbl
[23] R. E. Greene; K. Shiohama Convex functions on complete noncompact manifolds : topological structure, Invent. Math., Volume 63 (1981) no. 1, pp. 129-157 | DOI | MR | Zbl
[24] R. E. Greene; H. Wu Lipschitz convergence of Riemannian manifolds, Pacific J. Math., Volume 131 (1988) no. 1, pp. 119-141 http://projecteuclid.org/getRecord?id=euclid.pjm/1102690072 | MR | Zbl
[25] Misha Gromov Metric structures for Riemannian and non-Riemannian spaces, Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston, MA, 2007 (Based on the 1981 French original, With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates) | MR | Zbl
[26] Luis Guijarro; Vitali Kapovitch Restrictions on the geometry at infinity of nonnegatively curved manifolds, Duke Math. J., Volume 78 (1995) no. 2, pp. 257-276 | DOI | MR | Zbl
[27] Luis Guijarro; Peter Petersen Rigidity in non-negative curvature, Ann. Sci. École Norm. Sup. (4), Volume 30 (1997) no. 5, pp. 595-603 | DOI | MR | Zbl
[28] T. Holck Colding; A. Naber Characterization of Tangent Cones of Noncollapsed Limits with Lower Ricci Bounds and Applications, ArXiv e-prints (2011) | MR | Zbl
[29] Atsushi Kasue A compactification of a manifold with asymptotically nonnegative curvature, Ann. Sci. École Norm. Sup. (4), Volume 21 (1988) no. 4, pp. 593-622 | Numdam | MR | Zbl
[30] John Lott Manifolds with quadratic curvature decay and fast volume growth, Math. Ann., Volume 325 (2003) no. 3, pp. 525-541 | DOI | MR | Zbl
[31] John Lott; Zhongmin Shen Manifolds with quadratic curvature decay and slow volume growth, Ann. Sci. École Norm. Sup. (4), Volume 33 (2000) no. 2, pp. 275-290 | DOI | Numdam | MR | Zbl
[32] Vincent Minerbe On the asymptotic geometry of gravitational instantons, Ann. Sci. Éc. Norm. Supér. (4), Volume 43 (2010) no. 6, pp. 883-924 | Numdam | MR | Zbl
[33] G. Perelman A complete Riemannian manifold of positive Ricci curvature with Euclidean volume growth and nonunique asymptotic cone, Comparison geometry (Berkeley, CA, 1993–94) (Math. Sci. Res. Inst. Publ.), Volume 30, Cambridge Univ. Press, Cambridge, 1997, pp. 165-166 | MR | Zbl
[34] Peter Petersen Riemannian geometry, Graduate Texts in Mathematics, 171, Springer, New York, 2006 | MR | Zbl
[35] Anton Petrunin; Wilderich Tuschmann Asymptotical flatness and cone structure at infinity, Math. Ann., Volume 321 (2001) no. 4, pp. 775-788 | DOI | MR | Zbl
[36] Xiaochun Rong On the fundamental groups of manifolds of positive sectional curvature, Ann. of Math. (2), Volume 143 (1996) no. 2, pp. 397-411 | DOI | MR | Zbl
[37] V. A. Šarafutdinov The Pogorelov-Klingenberg theorem for manifolds that are homeomorphic to , Sibirsk. Mat. Ž., Volume 18 (1977) no. 4, p. 915-925, 958 | MR | Zbl
[38] Jiping Sha; Zhongmin Shen Complete manifolds with nonnegative Ricci curvature and quadratically nonnegatively curved infinity, Amer. J. Math., Volume 119 (1997) no. 6, pp. 1399-1404 http://muse.jhu.edu/journals/american_journal_of_mathematics/v119/119.6sha.pdf | MR | Zbl
[39] Zhongmin Shen; Christina Sormani The topology of open manifolds with nonnegative Ricci curvature, Commun. Math. Anal. (2008) no. Conference 1, pp. 20-34 | MR | Zbl
[40] Wan-Xiong Shi Complete noncompact three-manifolds with nonnegative Ricci curvature, J. Differential Geom., Volume 29 (1989) no. 2, pp. 353-360 http://projecteuclid.org/getRecord?id=euclid.jdg/1214442879 | MR | Zbl
[41] Christina Sormani The almost rigidity of manifolds with lower bounds on Ricci curvature and minimal volume growth, Comm. Anal. Geom., Volume 8 (2000) no. 1, pp. 159-212 | MR | Zbl
[42] Stefan Unnebrink Asymptotically flat -manifolds, Differential Geom. Appl., Volume 6 (1996) no. 3, pp. 271-274 | DOI | MR | Zbl
Cited by Sources: