J. Maher a montré qu’une variété hyperbolique de dimension
J. Maher has proven that a closed, connected and orientable hyperbolic 3-manifold
@article{TSG_2010-2011__29__97_0, author = {Claire Renard}, title = {Gradients de {Heegaard} sous-logarithmiques d{\textquoteright}une vari\'et\'e hyperbolique de dimension trois et fibres virtuelles}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {97--131}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {29}, year = {2010-2011}, doi = {10.5802/tsg.287}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.287/} }
TY - JOUR AU - Claire Renard TI - Gradients de Heegaard sous-logarithmiques d’une variété hyperbolique de dimension trois et fibres virtuelles JO - Séminaire de théorie spectrale et géométrie PY - 2010-2011 SP - 97 EP - 131 VL - 29 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.287/ DO - 10.5802/tsg.287 LA - fr ID - TSG_2010-2011__29__97_0 ER -
%0 Journal Article %A Claire Renard %T Gradients de Heegaard sous-logarithmiques d’une variété hyperbolique de dimension trois et fibres virtuelles %J Séminaire de théorie spectrale et géométrie %D 2010-2011 %P 97-131 %V 29 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.287/ %R 10.5802/tsg.287 %G fr %F TSG_2010-2011__29__97_0
Claire Renard. Gradients de Heegaard sous-logarithmiques d’une variété hyperbolique de dimension trois et fibres virtuelles. Séminaire de théorie spectrale et géométrie, Tome 29 (2010-2011), pp. 97-131. doi : 10.5802/tsg.287. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.287/
[1] Michel Boileau; Sylvain Maillot; Joan Porti Three-dimensional orbifolds and their geometric structures, Panoramas et Synthèses, 15, Société Mathématique de France, Paris, 2003 | MR | Zbl
[2] Francis Bonahon; Jean-Pierre Otal Scindements de Heegaard des espaces lenticulaires, Ann. Sci. École Norm. Sup. (4), Volume 16 (1983) no. 3, p. 451-466 (1984) | Numdam | MR | Zbl
[3] A. J. Casson; C. McA. Gordon Reducing Heegaard splittings, Topology Appl., Volume 27 (1987) no. 3, pp. 275-283 | DOI | MR | Zbl
[4] Tobias H. Colding; Camillo De Lellis The min-max construction of minimal surfaces, Surveys in differential geometry, Vol. VIII (Boston, MA, 2002) (Surv. Differ. Geom., VIII), Int. Press, Somerville, MA, 2003, pp. 75-107 | MR | Zbl
[5] Michael Freedman; Joel Hass; Peter Scott Least area incompressible surfaces in
[6] Charles Frohman; Joel Hass Unstable minimal surfaces and Heegaard splittings, Invent. Math., Volume 95 (1989) no. 3, pp. 529-540 | DOI | MR | Zbl
[7] David Gabai Foliations and the topology of
[8] Wolfgang Haken Some results on surfaces in
[9] Allen Hatcher Notes on basic three-manifolds topology, 2002 (Livre en préparation, disponible à l’adresse http://www.math.cornell.edu/~hatcher/3M/3Mfds.pdf)
[10] John Hempel
[11] William Jaco Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics, 43, American Mathematical Society, Providence, R.I., 1980 | MR | Zbl
[12] Marc Lackenby The asymptotic behaviour of Heegaard genus, Math. Res. Lett., Volume 11 (2004) no. 2-3, pp. 139-149 | MR | Zbl
[13] Marc Lackenby Heegaard splittings, the virtually Haken conjecture and property
[14] Joseph Maher Heegaard gradient and virtual fibers, Geom. Topol., Volume 9 (2005), p. 2227-2259 (electronic) | DOI | MR | Zbl
[15] Edwin E. Moise Affine structures in
[16] Jean-Pierre Otal Sur les scindements de Heegaard de la sphère
[17] Jon T. Pitts Existence and regularity of minimal surfaces on Riemannian manifolds, Mathematical Notes, 27, Princeton University Press, Princeton, N.J., 1981 | MR | Zbl
[18] Jon T. Pitts; J. H. Rubinstein Existence of minimal surfaces of bounded topological type in three-manifolds, Miniconference on geometry and partial differential equations (Canberra, 1985) (Proc. Centre Math. Anal. Austral. Nat. Univ.), Volume 10, Austral. Nat. Univ., Canberra, 1986, pp. 163-176 | MR | Zbl
[19] Claire Renard Revêtements finis d’une variété hyperbolique de dimension trois et fibres virtuelles. Thèse de Doctorat de l’Université de Toulouse (PHD Thesis).
[20] Colin Patrick Rourke; Brian Joseph Sanderson Introduction to piecewise-linear topology, Springer Study Edition, Springer-Verlag, Berlin, 1982 (Reprint) | MR
[21] Martin Scharlemann Heegaard splittings of compact 3-manifolds, Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 921-953 | MR | Zbl
[22] Martin Scharlemann; Abigail Thompson Heegaard splittings of
[23] Martin Scharlemann; Abigail Thompson Thin position for
[24] L. C. Siebenmann Les bissections expliquent le théorème de Reidemeister-Singer, Prépublications d’Orsay, Volume 80 (1979) no. 16
[25] Juan Souto Geometry, Heegaard splittings and rank of the fundamental group of hyperbolic 3-manifolds, Workshop on Heegaard Splittings (Geom. Topol. Monogr.), Volume 12, Geom. Topol. Publ., Coventry, 2007, pp. 351-399 | DOI | MR | Zbl
[26] William P. Thurston Three dimensional manifolds, Kleinian groups and hyperbolic geometry., The mathematical heritage of Henri Poincare, Proc. Symp. Pure Math. 39, Part 1, Bloomington/Indiana 1980, 87-111 (1983)., 1983 | MR | Zbl
[27] Friedhelm Waldhausen Heegaard-Zerlegungen der
[28] Friedhelm Waldhausen On irreducible
Cité par Sources :