J. Maher has proven that a closed, connected and orientable hyperbolic 3-manifold virtually fibers over the circle if and only if it admits an infinite family of finite covers with bounded Heegaard genus. Building on Maher’s proof, we present in this article a theorem giving a sufficient condition for a finite cover of a closed hyperbolic 3-manifold to contain a virtual fiber in terms of the covering degree and the Heegaard genus of the cover. We introduce sub-logarithmic versions of Lackenby’s infimal Heegaard gradients. In this setting, we expose the analogues of Lackenby’s Heegaard gradient and strong Heegaard gradient conjectures.
J. Maher a montré qu’une variété hyperbolique de dimension compacte sans bord, connexe et orientable fibre virtuellement sur le cercle si et seulement si elle admet une famille infinie de revêtements finis de genre de Heegaard borné. En s’appuyant sur la démonstration de Maher, cet article présente un théorème donnant une condition suffisante pour qu’un revêtement fini d’une variété hyperbolique compacte de dimension contienne une fibre virtuelle, qui s’exprime en fonction du degré du revêtement et de son genre de Heegaard. On introduit des versions sous-logarithmiques des gradients de Heegaard de Lackenby. Dans ce contexte, on propose des analogues aux conjectures du gradient de Heegaard et du gradient de Heegaard fort de Lackenby.
@article{TSG_2010-2011__29__97_0, author = {Claire Renard}, title = {Gradients de {Heegaard} sous-logarithmiques d{\textquoteright}une vari\'et\'e hyperbolique de dimension trois et fibres virtuelles}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {97--131}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {29}, year = {2010-2011}, doi = {10.5802/tsg.287}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.287/} }
TY - JOUR AU - Claire Renard TI - Gradients de Heegaard sous-logarithmiques d’une variété hyperbolique de dimension trois et fibres virtuelles JO - Séminaire de théorie spectrale et géométrie PY - 2010-2011 SP - 97 EP - 131 VL - 29 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.287/ DO - 10.5802/tsg.287 LA - fr ID - TSG_2010-2011__29__97_0 ER -
%0 Journal Article %A Claire Renard %T Gradients de Heegaard sous-logarithmiques d’une variété hyperbolique de dimension trois et fibres virtuelles %J Séminaire de théorie spectrale et géométrie %D 2010-2011 %P 97-131 %V 29 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.287/ %R 10.5802/tsg.287 %G fr %F TSG_2010-2011__29__97_0
Claire Renard. Gradients de Heegaard sous-logarithmiques d’une variété hyperbolique de dimension trois et fibres virtuelles. Séminaire de théorie spectrale et géométrie, Volume 29 (2010-2011), pp. 97-131. doi : 10.5802/tsg.287. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.287/
[1] Michel Boileau; Sylvain Maillot; Joan Porti Three-dimensional orbifolds and their geometric structures, Panoramas et Synthèses, 15, Société Mathématique de France, Paris, 2003 | MR | Zbl
[2] Francis Bonahon; Jean-Pierre Otal Scindements de Heegaard des espaces lenticulaires, Ann. Sci. École Norm. Sup. (4), Volume 16 (1983) no. 3, p. 451-466 (1984) | Numdam | MR | Zbl
[3] A. J. Casson; C. McA. Gordon Reducing Heegaard splittings, Topology Appl., Volume 27 (1987) no. 3, pp. 275-283 | DOI | MR | Zbl
[4] Tobias H. Colding; Camillo De Lellis The min-max construction of minimal surfaces, Surveys in differential geometry, Vol. VIII (Boston, MA, 2002) (Surv. Differ. Geom., VIII), Int. Press, Somerville, MA, 2003, pp. 75-107 | MR | Zbl
[5] Michael Freedman; Joel Hass; Peter Scott Least area incompressible surfaces in -manifolds, Invent. Math., Volume 71 (1983) no. 3, pp. 609-642 | DOI | MR | Zbl
[6] Charles Frohman; Joel Hass Unstable minimal surfaces and Heegaard splittings, Invent. Math., Volume 95 (1989) no. 3, pp. 529-540 | DOI | MR | Zbl
[7] David Gabai Foliations and the topology of -manifolds, J. Differential Geom., Volume 18 (1983) no. 3, pp. 445-503 http://projecteuclid.org/getRecord?id=euclid.jdg/1214437784 | MR | Zbl
[8] Wolfgang Haken Some results on surfaces in -manifolds, Studies in Modern Topology, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1968, pp. 39-98 | MR | Zbl
[9] Allen Hatcher Notes on basic three-manifolds topology, 2002 (Livre en préparation, disponible à l’adresse http://www.math.cornell.edu/~hatcher/3M/3Mfds.pdf)
[10] John Hempel -Manifolds, Princeton University Press, Princeton, N. J., 1976 (Ann. of Math. Studies, No. 86) | Zbl
[11] William Jaco Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics, 43, American Mathematical Society, Providence, R.I., 1980 | MR | Zbl
[12] Marc Lackenby The asymptotic behaviour of Heegaard genus, Math. Res. Lett., Volume 11 (2004) no. 2-3, pp. 139-149 | MR | Zbl
[13] Marc Lackenby Heegaard splittings, the virtually Haken conjecture and property , Invent. Math., Volume 164 (2006) no. 2, pp. 317-359 | DOI | MR | Zbl
[14] Joseph Maher Heegaard gradient and virtual fibers, Geom. Topol., Volume 9 (2005), p. 2227-2259 (electronic) | DOI | MR | Zbl
[15] Edwin E. Moise Affine structures in -manifolds. V. The triangulation theorem and Hauptvermutung, Ann. of Math. (2), Volume 56 (1952), pp. 96-114 | MR | Zbl
[16] Jean-Pierre Otal Sur les scindements de Heegaard de la sphère , Topology, Volume 30 (1991) no. 2, pp. 249-257 | DOI | MR | Zbl
[17] Jon T. Pitts Existence and regularity of minimal surfaces on Riemannian manifolds, Mathematical Notes, 27, Princeton University Press, Princeton, N.J., 1981 | MR | Zbl
[18] Jon T. Pitts; J. H. Rubinstein Existence of minimal surfaces of bounded topological type in three-manifolds, Miniconference on geometry and partial differential equations (Canberra, 1985) (Proc. Centre Math. Anal. Austral. Nat. Univ.), Volume 10, Austral. Nat. Univ., Canberra, 1986, pp. 163-176 | MR | Zbl
[19] Claire Renard Revêtements finis d’une variété hyperbolique de dimension trois et fibres virtuelles. Thèse de Doctorat de l’Université de Toulouse (PHD Thesis).
[20] Colin Patrick Rourke; Brian Joseph Sanderson Introduction to piecewise-linear topology, Springer Study Edition, Springer-Verlag, Berlin, 1982 (Reprint) | MR
[21] Martin Scharlemann Heegaard splittings of compact 3-manifolds, Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 921-953 | MR | Zbl
[22] Martin Scharlemann; Abigail Thompson Heegaard splittings of are standard, Math. Ann., Volume 295 (1993) no. 3, pp. 549-564 | DOI | MR | Zbl
[23] Martin Scharlemann; Abigail Thompson Thin position for -manifolds, Geometric topology (Haifa, 1992) (Contemp. Math.), Volume 164, Amer. Math. Soc., Providence, RI, 1994, pp. 231-238 | MR | Zbl
[24] L. C. Siebenmann Les bissections expliquent le théorème de Reidemeister-Singer, Prépublications d’Orsay, Volume 80 (1979) no. 16
[25] Juan Souto Geometry, Heegaard splittings and rank of the fundamental group of hyperbolic 3-manifolds, Workshop on Heegaard Splittings (Geom. Topol. Monogr.), Volume 12, Geom. Topol. Publ., Coventry, 2007, pp. 351-399 | DOI | MR | Zbl
[26] William P. Thurston Three dimensional manifolds, Kleinian groups and hyperbolic geometry., The mathematical heritage of Henri Poincare, Proc. Symp. Pure Math. 39, Part 1, Bloomington/Indiana 1980, 87-111 (1983)., 1983 | MR | Zbl
[27] Friedhelm Waldhausen Heegaard-Zerlegungen der -Sphäre, Topology, Volume 7 (1968), pp. 195-203 | MR | Zbl
[28] Friedhelm Waldhausen On irreducible -manifolds which are sufficiently large, Ann. of Math. (2), Volume 87 (1968), pp. 56-88 | MR | Zbl
Cited by Sources: