Mersenne banner

Livres, Actes et Séminaires du Centre Mersenne

  • Livres
  • Séminaires
  • Congrès
  • Tout
  • Auteur
  • Titre
  • Bibliographie
  • Plein texte
NOT
Entre et
  • Tout
  • Auteur
  • Titre
  • Date
  • Bibliographie
  • Mots-clés
  • Plein texte
  • Précédent
  • Séminaire de théorie spectrale et géométrie
  • Tome 28 (2009-2010)
  • p. 51-62
  • Suivant
Spectral theory of translation surfaces : A short introduction
Luc Hillairet1
1 Université de Nantes Laboratoire de mathématiques Jean Leray UMR CNRS 6629 2 rue de la Houssinière BP 92208 44322 Nantes cedex 3 (France)
Séminaire de théorie spectrale et géométrie, Tome 28 (2009-2010), pp. 51-62.
  • Résumé
  • Abstract

On définit les surfaces de translation et le Laplacien associé à la métrique euclidienne (avec singularités). Ce laplacien n’est pas essentiellement auto-adjoint et on rappelle la façon dont les extensions auto-adjointes sont caractérisées. Il y a deux choix naturels dont on montre que les spectres coïncident.

We define translation surfaces and, on these, the Laplace operator that is associated with the Euclidean (singular) metric. This Laplace operator is not essentially self-adjoint and we recall how self-adjoint extensions are chosen. There are essentially two geometrical self-adjoint extensions and we show that they actually share the same spectrum

  • Détail
  • Export
  • Comment citer
DOI : 10.5802/tsg.278
Classification : 58C40, 58J53, 30Fxx
Keywords: translation surfaces, flat Laplace operator, isospectrality
Affiliations des auteurs :
Luc Hillairet 1

1 Université de Nantes Laboratoire de mathématiques Jean Leray UMR CNRS 6629 2 rue de la Houssinière BP 92208 44322 Nantes cedex 3 (France)
  • BibTeX
  • RIS
  • EndNote
@article{TSG_2009-2010__28__51_0,
     author = {Luc Hillairet},
     title = {Spectral theory of translation surfaces : {A} short introduction},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {51--62},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {28},
     year = {2009-2010},
     doi = {10.5802/tsg.278},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.278/}
}
TY  - JOUR
AU  - Luc Hillairet
TI  - Spectral theory of translation surfaces : A short introduction
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2009-2010
SP  - 51
EP  - 62
VL  - 28
PB  - Institut Fourier
PP  - Grenoble
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.278/
DO  - 10.5802/tsg.278
LA  - en
ID  - TSG_2009-2010__28__51_0
ER  - 
%0 Journal Article
%A Luc Hillairet
%T Spectral theory of translation surfaces : A short introduction
%J Séminaire de théorie spectrale et géométrie
%D 2009-2010
%P 51-62
%V 28
%I Institut Fourier
%C Grenoble
%U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.278/
%R 10.5802/tsg.278
%G en
%F TSG_2009-2010__28__51_0
Luc Hillairet. Spectral theory of translation surfaces : A short introduction. Séminaire de théorie spectrale et géométrie, Tome 28 (2009-2010), pp. 51-62. doi : 10.5802/tsg.278. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.278/
  • Bibliographie
  • Cité par

[1] M. Sh. Birman; M. Z. Solomjak Spectral theory of selfadjoint operators in Hilbert space, Mathematics and its Applications (Soviet Series), D. Reidel Publishing Co., Dordrecht, 1987 (Translated from the 1980 Russian original by S. Khrushchëv and V. Peller) | MR

[2] J. Cheeger; M. Taylor On the diffraction of waves by conical singularities. I, Comm. Pure Appl. Math., Volume 35 (1982) no. 3, pp. 275-331 | MR | Zbl

[3] G. Forni Sobolev regularity of solutions of the cohomological equation (preprint, http://arxiv.org/abs/0707.0940v2, 2007)

[4] G. Grubb Distributions and operators, Graduate Texts in Mathematics, 252, Springer, New York, 2009 | MR | Zbl

[5] L. Hillairet Spectral decomposition of square-tiled surfaces, Math. Z., Volume 260 (2008) no. 2, pp. 393-408 | MR | Zbl

[6] L. Hillairet; A. Kokotov S -matrix and Krein formula on Euclidean surfaces with conical singularities (in preparation, 2010)

[7] D. Jakobson; M. Levitin; N. Nadirashvili; I. Polterovich Spectral problems with mixed Dirichlet-Neumann boundary conditions: isospectrality and beyond, J. Comput. Appl. Math., Volume 194 (2006) no. 1, pp. 141-155 | MR | Zbl

[8] A. Kokotov Compact polyhedral surfaces of an arbitrary genus and determinants of Laplacians (preprint, http://arxiv.org/abs/0906.0717v1, 2009)

[9] A. Kokotov; D. Korotkin Tau-functions on spaces of abelian differentials and higher genus generalizations of Ray-Singer formula, J. Differential Geom., Volume 82 (2009) no. 1, pp. 35-100 | MR | Zbl

[10] V. Kostrykin; R. Schrader Laplacians on metric graphs: eigenvalues, resolvents and semigroups, Quantum graphs and their applications (Contemp. Math.), Volume 415, Amer. Math. Soc., Providence, RI, 2006, pp. 201-225 | MR | Zbl

[11] M. Reed; B. Simon Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1975 | MR | Zbl

[12] M. Reed; B. Simon Methods of modern mathematical physics. I, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980 (Functional analysis) | MR | Zbl

[13] M. Troyanov Les surfaces euclidiennes à singularités coniques, Enseign. Math. (2), Volume 32 (1986) no. 1-2, pp. 79-94 | MR | Zbl

[14] A. Zorich Flat surfaces, Frontiers in number theory, physics, and geometry. I, Springer, Berlin, 2006, pp. 437-583 | MR | Zbl

Cité par Sources :

Diffusé par : Publié par : Développé par :
  • Nous suivre