Mersenne banner

Books, Proceedings and Seminars of Centre Mersenne

  • Books
  • Seminars
  • Conferences
  • All
  • Author
  • Title
  • References
  • Full text
NOT
Between and
  • All
  • Author
  • Title
  • Date
  • References
  • Keywords
  • Full text
  • Séminaire de théorie spectrale et géométrie
  • Volume 28 (2009-2010)
  • p. 1-12
  • Next
Stabilité des systèmes à commutations du plan
Ugo Boscain1; Grégoire Charlot2; Mario Sigalotti3
1 tabacckludge ’Ecole polytechnique CMAP Route de Saclay 91128 Palaiseau cedex (France)
2 Université Grenoble 1 Institut Fourier 100 rue des maths BP 74 38402 St Martin d’Hères cedex (France)
3 Université Nancy 1 Institut Élie Cartan de Nancy BP 70239 54506 Vandœuvre-lès-Nancy cedex (France)
Séminaire de théorie spectrale et géométrie, Volume 28 (2009-2010), pp. 1-12.
  • Abstract
  • Résumé

Let X and Y be two smooth vector fields on R 2 , globally asymptotically stable at the origin. We give some sufficient and some necessary conditions on the topology of the set where X and Y are parallel for global asymptotic stability of the nonautonomous and nonlinear control system

q˙(t)=u(t)X(q(t))+(1-u(t))Y(q(t)),

where u:[0,+∞[→{0,1} is an arbitrary measurable function. Such conditions can be verified without any integration or construction of a Lyapunov function, and are robust.

Soient X et Y deux champs de vecteurs lisses sur ℝ 2 globalement asymptotiquement stables à l’origine. Nous donnons des conditions nécessaires et des conditions suffisantes sur la topologie de l’ensemble des points où X et Y sont parallèles pour pouvoir assurer la stabilité asymptotique globale du système contrôlé non linéaire non autonome

q˙(t)=u(t)X(q(t))+(1-u(t))Y(q(t))

où le contrôle u est une fonction mesurable arbitraire de [0,+∞[ dans {0,1}. Les conditions données ne nécessitent aucune intégration ou construction d’une fonction de Lyapunov pour être vérifiées, et sont robustes.

  • Article information
  • Export
  • How to cite
DOI: 10.5802/tsg.275
Classification: 32C20, 37N35, 93D20
Keywords: stabilité asymptotique globale, commutations, non linéaire
Author's affiliations:
Ugo Boscain 1; Grégoire Charlot 2; Mario Sigalotti 3

1 tabacckludge ’Ecole polytechnique CMAP Route de Saclay 91128 Palaiseau cedex (France)
2 Université Grenoble 1 Institut Fourier 100 rue des maths BP 74 38402 St Martin d’Hères cedex (France)
3 Université Nancy 1 Institut Élie Cartan de Nancy BP 70239 54506 Vandœuvre-lès-Nancy cedex (France)
  • BibTeX
  • RIS
  • EndNote
@article{TSG_2009-2010__28__1_0,
     author = {Ugo Boscain and Gr\'egoire Charlot and Mario Sigalotti},
     title = {Stabilit\'e des syst\`emes \`a commutations du plan},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {1--12},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {28},
     year = {2009-2010},
     doi = {10.5802/tsg.275},
     language = {fr},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.275/}
}
TY  - JOUR
AU  - Ugo Boscain
AU  - Grégoire Charlot
AU  - Mario Sigalotti
TI  - Stabilité des systèmes à commutations du plan
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2009-2010
SP  - 1
EP  - 12
VL  - 28
PB  - Institut Fourier
PP  - Grenoble
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.275/
DO  - 10.5802/tsg.275
LA  - fr
ID  - TSG_2009-2010__28__1_0
ER  - 
%0 Journal Article
%A Ugo Boscain
%A Grégoire Charlot
%A Mario Sigalotti
%T Stabilité des systèmes à commutations du plan
%J Séminaire de théorie spectrale et géométrie
%D 2009-2010
%P 1-12
%V 28
%I Institut Fourier
%C Grenoble
%U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.275/
%R 10.5802/tsg.275
%G fr
%F TSG_2009-2010__28__1_0
Ugo Boscain; Grégoire Charlot; Mario Sigalotti. Stabilité des systèmes à commutations du plan. Séminaire de théorie spectrale et géométrie, Volume 28 (2009-2010), pp. 1-12. doi : 10.5802/tsg.275. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.275/
  • References
  • Cited by

[1] R. Abraham; J. Robbin Transversal mappings and flows, An appendix by Al Kelley, W. A. Benjamin, Inc., New York-Amsterdam, 1967 | MR | Zbl

[2] A. A. Agrachev; U. Boscain; G. Charlot; R. Ghezzi; M. Sigalotti Two-dimensional almost-Riemannian structures with tangency points, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 27 (2010) no. 3, pp. 793-807 | MR | Zbl

[3] A. A. Agrachev; D. Liberzon Lie-algebraic stability criteria for switched systems, SIAM J. Control Optim., Volume 40 (2001) no. 1, p. 253-269 (electronic) | MR | Zbl

[4] D. Angeli; B. Ingalls; E. D. Sontag; Y. Wang Uniform global asymptotic stability of differential inclusions, J. Dynam. Control Systems, Volume 10 (2004) no. 3, pp. 391-412 | MR | Zbl

[5] M. Balde; U. Boscain; P. Mason A note on stability conditions for planar switched systems, Internat. J. Control, Volume 82 (2009) no. 10, pp. 1882-1888 | MR | Zbl

[6] F. Blanchini; S. Miani A new class of universal Lyapunov functions for the control of uncertain linear systems, IEEE Trans. Automat. Control, Volume 44 (1999) no. 3, pp. 641-647 | MR | Zbl

[7] B. Bonnard; G. Charlot; R. Ghezzi; G. Janin The sphere and the cut locus at a tangency point in two-dimensional almost-Riemannian geometry, Journal of Dynamical and Control Systems, Volume 17 (2011), pp. 141-161

[8] U. Boscain Stability of planar switched systems : the linear single input case, SIAM J. Control Optim., Volume 41 (2002) no. 1, p. 89-112 (electronic) | MR | Zbl

[9] U. Boscain; Th. Chambrion; G. Charlot Nonisotropic 3-level quantum systems : complete solutions for minimum time and minimum energy, Discrete Contin. Dyn. Syst. Ser. B, Volume 5 (2005) no. 4, p. 957-990 (electronic) | MR | Zbl

[10] U. Boscain; G. Charlot; R. Ghezzi; M. Sigalotti Lipschitz classification of two-dimensional almost-Riemannian distances on compact oriented surfaces (article soumis)

[11] U. Boscain; G. Charlot; F. Rossi Existence of planar curves minimizing length and curvature, Proceedings of the Steklov Institute of Mathematics, Volume 270 (2010) no. 1, pp. 43-56 | MR

[12] U. Boscain; G. Charlot; M. Sigalotti Stability of planar nonlinear switched systems, Discrete Contin. Dyn. Syst., Volume 15 (2006) no. 2, pp. 415-432 | MR | Zbl

[13] U. Boscain; B. Piccoli Optimal syntheses for control systems on 2-D manifolds, Mathématiques & Applications (Berlin) [Mathematics & Applications], 43, Springer-Verlag, Berlin, 2004 | MR | Zbl

[14] U. Boscain; M. Sigalotti High-order angles in almost-Riemannian geometry, Actes du Séminaire de Théorie Spectrale et Géométrie. Vol. 25. Année 2006–2007 (Sémin. Théor. Spectr. Géom.), Volume 25, Univ. Grenoble I, Saint, 2008, pp. 41-54 | Numdam | MR | Zbl

[15] A. A. Davydov Qualitative theory of control systems, Translations of Mathematical Monographs, 141, American Mathematical Society, Providence, RI, 1994 (Translated from the Russian manuscript by V. M. Volosov) | MR | Zbl

[16] W. P. Dayawansa; C. F. Martin A converse Lyapunov theorem for a class of dynamical systems which undergo switching, IEEE Trans. Automat. Control, Volume 44 (1999) no. 4, pp. 751-760 | MR | Zbl

[17] L. Grüne; E. D. Sontag; F. R. Wirth Asymptotic stability equals exponential stability, and ISS equals finite energy gain—if you twist your eyes, Systems Control Lett., Volume 38 (1999) no. 2, pp. 127-134 | MR | Zbl

[18] B. Ingalls; E. D. Sontag; Y. Wang An infinite-time relaxation theorem for differential inclusions, Proc. Amer. Math. Soc., Volume 131 (2003) no. 2, p. 487-499 (electronic) | MR | Zbl

[19] D. Liberzon Switching in systems and control, Systems & Control : Foundations & Applications, Birkhäuser Boston Inc., Boston, MA, 2003 | MR | Zbl

[20] D. Liberzon; J. P. Hespanha; A. S. Morse Stability of switched systems : a Lie-algebraic condition, Systems Control Lett., Volume 37 (1999) no. 3, pp. 117-122 | MR | Zbl

[21] D. Liberzon; A. S. Morse Basic problems in stability and design of switched systems, IEEE Control Systems Magazine, Volume 19 (1999), pp. 59-70

[22] P. Mason; U. Boscain; Y. Chitour Common polynomial Lyapunov functions for linear switched systems, SIAM J. Control Optim., Volume 45 (2006) no. 1, p. 226-245 (electronic) | MR | Zbl

Cited by Sources:

Web publisher : Published by : Developed by :
  • Follow us