Ces notes ont pour but de rassembler les différents résultats de combinatoire des mots relatifs au billard polygonal et polyédral. On commence par rappeler quelques notions de combinatoire, puis on définit le billard, les notions utiles en dynamique et le codage de l’application. On énonce alors les résultats connus en dimension deux puis trois.
@article{TSG_2006-2007__25__1_0, author = {Nicolas Bedaride}, title = {Combinatoire du billard dans un poly\`edre}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {1--15}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {25}, year = {2006-2007}, doi = {10.5802/tsg.243}, mrnumber = {2478804}, zbl = {1166.37003}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.243/} }
TY - JOUR AU - Nicolas Bedaride TI - Combinatoire du billard dans un polyèdre JO - Séminaire de théorie spectrale et géométrie PY - 2006-2007 SP - 1 EP - 15 VL - 25 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.243/ DO - 10.5802/tsg.243 LA - fr ID - TSG_2006-2007__25__1_0 ER -
%0 Journal Article %A Nicolas Bedaride %T Combinatoire du billard dans un polyèdre %J Séminaire de théorie spectrale et géométrie %D 2006-2007 %P 1-15 %V 25 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.243/ %R 10.5802/tsg.243 %G fr %F TSG_2006-2007__25__1_0
Nicolas Bedaride. Combinatoire du billard dans un polyèdre. Séminaire de théorie spectrale et géométrie, Volume 25 (2006-2007), pp. 1-15. doi : 10.5802/tsg.243. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.243/
[1] P. Arnoux; C. Mauduit; I. Shiokawa; J. Tamura Complexity of sequences defined by billiard in the cube, Bull. Soc. Math. France, Volume 122 (1994) no. 1, pp. 1-12 | Numdam | MR | Zbl
[2] Yu. Baryshnikov Complexity of trajectories in rectangular billiards, Comm. Math. Phys., Volume 174 (1995) no. 1, pp. 43-56 | MR | Zbl
[3] N. Bedaride Billiard complexity in rational polyhedra, Regul. Chaotic Dyn., Volume 8 (2003) no. 1, pp. 97-104 | MR | Zbl
[4] N. Bedaride Classification of cubic billiard trajectories (2007) (to appear in Theoretical computer sciences)
[5] N. Bedaride Entropy of polyhedral billiard (2007) (to appear in Discrete and continuous dynamical systems) | MR
[6] N. Bedaride; P. Hubert Billiard complexity in the cube (2007) (to appear in Annales de l’institut Fourier) | Numdam
[7] J. Berstel; M. Pocchiola A geometric proof of the enumeration formula for Sturmian words, Internat. J. Algebra Comput., Volume 3 (1993) no. 3, pp. 349-355 | MR | Zbl
[8] J. Buzzi Piecewise isometries have zero topological entropy, Ergodic Theory Dynam. Systems, Volume 21 (2001) no. 5, pp. 1371-1377 | MR | Zbl
[9] J. Cassaigne Complexité et facteurs spéciaux, Bull. Belg. Math. Soc. Simon Stevin, Volume 4 (1997) no. 1, pp. 67-88 Journées Montoises (Mons, 1994) | MR | Zbl
[10] J. Cassaigne; P. Hubert; S. Troubetzkoy Complexity and growth for polygonal billiards, Ann. Inst. Fourier (Grenoble), Volume 52 (2002) no. 3, pp. 835-847 | Numdam | MR | Zbl
[11] Sébastien Ferenczi; Charles Holton; Luca Q. Zamboni Structure of three-interval exchange transformations III : ergodic and spectral properties, J. Anal. Math., Volume 93 (2004), pp. 103-138 | MR | Zbl
[12] Pytheas Fogg Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Mathematics, 1794, Springer-Verlag, Berlin, 2002 (Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel) | MR | Zbl
[13] G. Galʼperin; T. Krüger; S. Troubetzkoy Local instability of orbits in polygonal and polyhedral billiards, Comm. Math. Phys., Volume 169 (1995) no. 3, pp. 463-473 | MR | Zbl
[14] Arek Goetz; Guillaume Poggiaspalla Rotations by , Nonlinearity, Volume 17 (2004) no. 5, pp. 1787-1802 | MR | Zbl
[15] E. Gutkin; N. Haydn Topological entropy of polygon exchange transformations and polygonal billiards, Ergodic Theory Dynam. Systems, Volume 17 (1997) no. 4, pp. 849-867 | MR | Zbl
[16] G. H. Hardy; E. M. Wright An introduction to the theory of numbers, The Clarendon Press Oxford University Press, New York, 1979 | MR | Zbl
[17] P. Hubert Complexité de suites définies par des billards rationnels, Bull. Soc. Math. France, Volume 123 (1995) no. 2, pp. 257-270 | Numdam | MR | Zbl
[18] A. Katok The growth rate for the number of singular and periodic orbits for a polygonal billiard, Comm. Math. Phys., Volume 111 (1987) no. 1, pp. 151-160 | MR | Zbl
[19] E. P. Lipatov A classification of binary collections and properties of homogeneity classes, Problemy Kibernet. (1982) no. 39, pp. 67-84 | MR | Zbl
[20] F. Mignosi On the number of factors of Sturmian words, Theoret. Comput. Sci., Volume 82 (1991) no. 1, Algorithms Automat. Complexity Games, pp. 71-84 | MR | Zbl
[21] M. Morse; G. A. Hedlund Symbolic dynamics II. Sturmian trajectories, Amer. J. Math., Volume 62 (1940), pp. 1-42 | MR
[22] Gérard Rauzy Échanges d’intervalles et transformations induites, Acta Arith., Volume 34 (1979) no. 4, pp. 315-328 | Zbl
[23] Yu. V. Tarannikov On the number of ordered pairs of -balanced sets of length , Diskret. Mat., Volume 7 (1995) no. 3, pp. 146-156 | MR | Zbl
[24] S. Troubetzkoy Complexity lower bounds for polygonal billiards, Chaos, Volume 8 (1998) no. 1, pp. 242-244 | MR | Zbl
Cited by Sources: