@article{TSG_1997-1998__16__9_0,
author = {Hiroyasu Izeki and Shin Nayatani},
title = {Canonical metric on the domain of discontinuity of a kleinian group},
journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
pages = {9--32},
year = {1997-1998},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {16},
doi = {10.5802/tsg.194},
zbl = {0979.53036},
language = {en},
url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.194/}
}
TY - JOUR AU - Hiroyasu Izeki AU - Shin Nayatani TI - Canonical metric on the domain of discontinuity of a kleinian group JO - Séminaire de théorie spectrale et géométrie PY - 1997-1998 SP - 9 EP - 32 VL - 16 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.194/ DO - 10.5802/tsg.194 LA - en ID - TSG_1997-1998__16__9_0 ER -
%0 Journal Article %A Hiroyasu Izeki %A Shin Nayatani %T Canonical metric on the domain of discontinuity of a kleinian group %J Séminaire de théorie spectrale et géométrie %D 1997-1998 %P 9-32 %V 16 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.194/ %R 10.5802/tsg.194 %G en %F TSG_1997-1998__16__9_0
Hiroyasu Izeki; Shin Nayatani. Canonical metric on the domain of discontinuity of a kleinian group. Séminaire de théorie spectrale et géométrie, Tome 16 (1997-1998), pp. 9-32. doi: 10.5802/tsg.194
[1] . - Kobayashi conformai merrieon manifolds, Chern-Simons and n-invariants, Internat. J. Math., 2 ( 1991), 361-382. | MR | Zbl
[2] , and . - Volume et entropie minimale des espaces localement symétriques, Invent. Math., 103 ( 1991), 417-445. | EuDML | MR | Zbl
[3] , and . - Entropies et rigidités des espaces localement symétriques de courbure strictement négative, G.A.F.A., 5 ( 1995), 731-799. | EuDML | MR | Zbl
[4] , and . - Lemme de Schwarz réel et applications, preprint .
[5] and . - Differential Forms in Algebraic Topology, GTM 82, Springer-Verlag ( 1982). | MR | Zbl
[6] . - Sur le birapport au bord des CAT(-l)-sepaces, I.H.E.S. Publ . Math. , 83 ( 1996), 95 - 104. | Numdam | EuDML | MR | Zbl
[7] . - Thesis.
[8] . - Hausdorff dimension of quasi-circles, Publ. Math. I.H.E.S., 50 ( 1979), 11-25. | Numdam | EuDML | Zbl
[9] . - Cohomology of Groups, GTM 87, Springer-Verlag ( 1982). | MR | Zbl
[10] and . - Conformally natural extension of homeomorphisms of the circle, Acta Math., 157 ( 1986), 23 - 48. | MR | Zbl
[11] . - Limit sets of Kleinian groups and conformally flat Riemannian manifolds, Invent. Math., 122 ( 1995), 603 - 625. | MR | Zbl
[12] . - The quasiconformal stability of Klein ian groups and an embedding ofa space of flat conformal structures, preprint | Zbl
[13] and . - A canonical metric for Möbius structures and its applications, Math. Z., 216 ( 1994), 89-129. | MR | Zbl
[14] . - A Riemannian metric invariant under Möbius transformations in Rn, Complex analysis, Joensuu 1987, 223-235, Lecture Notes in Math., 1351, Springer, Berlin-New York, 1988. | MR | Zbl
[15] and . - Hodge theoryon hyperbolic manifolds, Duke Math. J., 60 ( 1990),509-559. | MR | Zbl
[16] . - Geometrically finite Kleinian groups: the completeness of Nayatani's metric, C. R.Acad. Sci. Paris, 325 ( 1997), 1065-1070. | MR | Zbl
[17] . - Patterson-Sullivan measure and conformally flat metrics, Math. Z., 225 ( 1997), 115-131. | MR | Zbl
[18] . - Kleinian groups and conformally flat metrics, Geometry and Global Analysis, Report of the First MSJ International Research Institute, Kotake et al. éd., Tohoku University ( 1993), 341-349. | MR | Zbl
[19] . - The ergodic theory of discrete groups, LMS Lect. Notes Ser. 143, Cambridge University Press, Cambridge, 1989. | MR | Zbl
[20] . - Matsushima's and Garland's vanishing theorems, and property(T), talk given at Max-Planck-Institut für Mathematik in den Naturwissenschaften in Leipzig ( 1996).
[21] . - The limit set of a Fuchsian group, Acta Math., 136 ( 1976), 241-273. | MR | Zbl
[22] and . - Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math., 92 ( 1988), 47-71. | MR | Zbl
[23] . - The density at infinity of a discrete group of hyperbolic motions, I.H.E.S. Publ. Math., 50 ( 1979), 171-202. | Numdam | MR | Zbl
[24] . - Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math., 153 ( 1984), 259-277. | MR | Zbl
[25] . - Dimension and rigidity of quasi-fuchsian representations, Ann. Math., 143 ( 1996), 331-355. | MR | Zbl
Cité par Sources :

